Home
Class 14
MATHS
If a=sqrt(2)+1 and b=sqrt(2)-1, then the...

If `a=sqrt(2)+1` and `b=sqrt(2)-1`, then the value of `(1)/(a+1)+(1)/(b+1)` will be

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{1}{a+1} + \frac{1}{b+1}\) given that \(a = \sqrt{2} + 1\) and \(b = \sqrt{2} - 1\). ### Step-by-Step Solution: 1. **Substitute the values of \(a\) and \(b\)**: \[ a + 1 = (\sqrt{2} + 1) + 1 = \sqrt{2} + 2 \] \[ b + 1 = (\sqrt{2} - 1) + 1 = \sqrt{2} \] 2. **Rewrite the expression**: We need to calculate: \[ \frac{1}{a+1} + \frac{1}{b+1} = \frac{1}{\sqrt{2} + 2} + \frac{1}{\sqrt{2}} \] 3. **Find a common denominator**: The common denominator for the two fractions is \((\sqrt{2} + 2) \cdot \sqrt{2}\). Thus, we rewrite the expression: \[ \frac{\sqrt{2}}{(\sqrt{2} + 2) \cdot \sqrt{2}} + \frac{\sqrt{2} + 2}{(\sqrt{2} + 2) \cdot \sqrt{2}} \] 4. **Combine the fractions**: \[ \frac{\sqrt{2} + (\sqrt{2} + 2)}{(\sqrt{2} + 2) \cdot \sqrt{2}} = \frac{2\sqrt{2} + 2}{(\sqrt{2} + 2) \cdot \sqrt{2}} \] 5. **Factor the numerator**: \[ = \frac{2(\sqrt{2} + 1)}{(\sqrt{2} + 2) \cdot \sqrt{2}} \] 6. **Simplify the expression**: Now we can simplify: \[ = \frac{2(\sqrt{2} + 1)}{\sqrt{2}(\sqrt{2} + 2)} \] 7. **Evaluate the expression**: We can substitute \(\sqrt{2} = 1.414\) to evaluate the expression numerically, but we can also notice that: \[ = \frac{2(\sqrt{2} + 1)}{\sqrt{2}(\sqrt{2} + 2)} = 1 \] Thus, the final value of \(\frac{1}{a+1} + \frac{1}{b+1}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

if a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |