Home
Class 14
MATHS
If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)...

If `x+(1)/(x)=sqrt(13)`, then `(3x)/((x^(2)-1))` equals to

A

`3sqrt(13)`

B

`(sqrt(13))/(3)`

C

`1`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = \sqrt{13} \) and find the value of \( \frac{3x}{x^2 - 1} \), we can follow these steps: ### Step 1: Square both sides of the equation Starting with the equation: \[ x + \frac{1}{x} = \sqrt{13} \] we square both sides: \[ \left(x + \frac{1}{x}\right)^2 = (\sqrt{13})^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 13 \] ### Step 2: Rearrange the equation Now, we can rearrange the equation to isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 13 - 2 \] Thus, we have: \[ x^2 + \frac{1}{x^2} = 11 \] ### Step 3: Express \( x^2 - 1 \) in terms of \( x \) We know that: \[ x^2 - 1 = \left(x + 1\right)\left(x - 1\right) \] We need to find \( 3x \) and \( x^2 - 1 \) to compute \( \frac{3x}{x^2 - 1} \). ### Step 4: Find \( x - \frac{1}{x} \) Next, we can find \( x - \frac{1}{x} \) using the identity: \[ \left(x - \frac{1}{x}\right)^2 = \left(x + \frac{1}{x}\right)^2 - 4 \] Substituting the known value: \[ \left(x - \frac{1}{x}\right)^2 = 13 - 4 = 9 \] Taking the square root gives: \[ x - \frac{1}{x} = 3 \quad \text{(or } -3\text{)} \] ### Step 5: Solve for \( x \) Now we have two equations: 1. \( x + \frac{1}{x} = \sqrt{13} \) 2. \( x - \frac{1}{x} = 3 \) Adding these two equations: \[ 2x = \sqrt{13} + 3 \implies x = \frac{\sqrt{13} + 3}{2} \] ### Step 6: Calculate \( x^2 - 1 \) Using \( x + \frac{1}{x} = \sqrt{13} \): \[ x^2 + \frac{1}{x^2} = 11 \] We can find \( x^2 - 1 \): \[ x^2 - 1 = x^2 + \frac{1}{x^2} - 1 - \frac{1}{x^2} = 11 - 1 = 10 \] ### Step 7: Substitute values into \( \frac{3x}{x^2 - 1} \) Now we can substitute \( x \) and \( x^2 - 1 \): \[ \frac{3x}{x^2 - 1} = \frac{3 \left(\frac{\sqrt{13} + 3}{2}\right)}{10} \] This simplifies to: \[ \frac{3(\sqrt{13} + 3)}{20} \] ### Step 8: Final simplification To find the numerical value: \[ \frac{3(\sqrt{13} + 3)}{20} = \frac{3\sqrt{13}}{20} + \frac{9}{20} \] ### Conclusion Thus, the value of \( \frac{3x}{x^2 - 1} \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x +(1)/(x) = 2sqrt(3) , then x^(2) + (1)/(x^(2)) is equal to .

If x + (1)/(x) = 3 sqrt(2) , then x^(2) + (1)/(x^(2)) is equal to :

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :

If x = 2+ sqrt(3) the (x + (1)/(x)) equals

If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

If x gt (1)/sqrt(3) then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |