Home
Class 14
MATHS
If x+sqrt(5)=5+sqrt(y) and x,y are posit...

If `x+sqrt(5)=5+sqrt(y)` and `x,y` are positive integers , then the value of `(sqrt(x)+y)/(x+sqrt(y))` is

A

`1`

B

`2`

C

`sqrt(5)`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \sqrt{5} = 5 + \sqrt{y} \) where \( x \) and \( y \) are positive integers, we will follow these steps: ### Step 1: Separate the rational and irrational parts We start with the equation: \[ x + \sqrt{5} = 5 + \sqrt{y} \] We can separate the rational and irrational parts. The rational parts are \( x \) and \( 5 \), and the irrational parts are \( \sqrt{5} \) and \( \sqrt{y} \). ### Step 2: Set the rational parts equal From the rational parts, we have: \[ x = 5 \] ### Step 3: Set the irrational parts equal From the irrational parts, we have: \[ \sqrt{5} = \sqrt{y} \] Squaring both sides gives us: \[ 5 = y \] ### Step 4: Substitute the values of \( x \) and \( y \) Now we have found that: \[ x = 5 \quad \text{and} \quad y = 5 \] ### Step 5: Calculate the expression \( \frac{\sqrt{x} + y}{x + \sqrt{y}} \) We need to evaluate: \[ \frac{\sqrt{x} + y}{x + \sqrt{y}} \] Substituting the values of \( x \) and \( y \): \[ \frac{\sqrt{5} + 5}{5 + \sqrt{5}} \] ### Step 6: Simplify the expression The expression can be simplified as follows: \[ \frac{\sqrt{5} + 5}{5 + \sqrt{5}} = 1 \] Thus, the value of \( \frac{\sqrt{x} + y}{x + \sqrt{y}} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

x+sqrt(5)=4+sqrt(y), then x+y=

sqrt(x/y) + sqrt(y/x) = 6

If x sqrt(243) = y sqrt(867) , where x and y are coprime numbers, then the value of (x-y) is

Evaluate (sqrt(x)+sqrt(y))(sqrt(x)-sqrt(y))

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |