Home
Class 14
MATHS
If c+(1)/(c )=sqrt(3), then the value of...

If `c+(1)/(c )=sqrt(3)`, then the value of `c^(3)+(1)/(c^(3))` is equal to

A

`0`

B

`3sqrt(3)`

C

`(1)/(sqrt(3))`

D

`6sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( c + \frac{1}{c} = \sqrt{3} \) and find the value of \( c^3 + \frac{1}{c^3} \), we can follow these steps: ### Step 1: Cube both sides of the equation We start with the equation: \[ c + \frac{1}{c} = \sqrt{3} \] Now, we cube both sides: \[ \left( c + \frac{1}{c} \right)^3 = \left( \sqrt{3} \right)^3 \] ### Step 2: Expand the left-hand side using the identity Using the identity \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \), where \( a = c \) and \( b = \frac{1}{c} \): \[ c^3 + \frac{1}{c^3} + 3 \left( c \cdot \frac{1}{c} \right) \left( c + \frac{1}{c} \right) = 3\sqrt{3} \] Since \( c \cdot \frac{1}{c} = 1 \), we can simplify this to: \[ c^3 + \frac{1}{c^3} + 3(c + \frac{1}{c}) = 3\sqrt{3} \] ### Step 3: Substitute the known value We know that \( c + \frac{1}{c} = \sqrt{3} \). Substitute this into the equation: \[ c^3 + \frac{1}{c^3} + 3\sqrt{3} = 3\sqrt{3} \] ### Step 4: Isolate \( c^3 + \frac{1}{c^3} \) Now, we can isolate \( c^3 + \frac{1}{c^3} \): \[ c^3 + \frac{1}{c^3} = 3\sqrt{3} - 3\sqrt{3} \] This simplifies to: \[ c^3 + \frac{1}{c^3} = 0 \] ### Final Answer Thus, the value of \( c^3 + \frac{1}{c^3} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Test Yourself|25 Videos
  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VI|17 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d are distinct complex number and |a|=|b|=|c|=|d|=3,|a-b|=|b-c|=|c-d|=sqrt(3) then the value of |a-d| is equals to

If a*b*c = sqrt((a+2)(b+3))/(c+1) , then the value of (6*15*3) is :

If (a - b) = 3 , (b - c) = 5 and ( c - a) = 1 , then the value of (a^(3) + b^(3) + c^(3) - 3abc)/(a + b + c) is

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

If a=-1, b=-2/3, c=-3/4 , then the value of a+b+c is

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Type -VII
  1. If x=sqrt(3)+(1)/(sqrt(3)), then the value of (x-(sqrt(126))/(sqrt(42)...

    Text Solution

    |

  2. If 4x=sqrt(5)+2, then the value of (x-(1)/(16x)) is

    Text Solution

    |

  3. What is x, if x^(3)=1.5^(3)-0.9^(3)-2.43

    Text Solution

    |

  4. If ((1)/(5))^(3y)=0.008, then the value of (0.25)^(y) is

    Text Solution

    |

  5. If x=1+sqrt(2)+sqrt(3), then find the value of x^(2)-2x+4.

    Text Solution

    |

  6. If x=sqrt(2)+1, then the value of x^(4)-(1)/(x^(4)) is

    Text Solution

    |

  7. (1)/(sqrt(a))-(1)/(sqrt(b))=0, then the value of (1)/(a)+(1)/(b) is

    Text Solution

    |

  8. If x=(0.25)^((1)/(2)), y=(0.4)^(2), z=(0.216)^((1)/(3)), then

    Text Solution

    |

  9. If a+(1)/(a)=2, then the value of (a^(5)+(1)/(a^(5))) will be

    Text Solution

    |

  10. If x=2+sqrt(3), then the value of (x^(2)-x+1)/(x^(2)+x+1) is :

    Text Solution

    |

  11. If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal...

    Text Solution

    |

  12. If (sqrt(3)+1)^(2)=x+sqrt(3)y, then the value of (x+y) is

    Text Solution

    |

  13. If p=9, q=sqrt(17) then the value of (p^(2)-q^(2))^((-1)/(3)) is equal...

    Text Solution

    |

  14. If sqrt(1+(x)/(144))=(13)/(12), then x equals to

    Text Solution

    |

  15. If a=sqrt(2)+1 and b=sqrt(2)-1, then the value of (1)/(a+1)+(1)/(b+1) ...

    Text Solution

    |

  16. If x=(1)/((sqrt(2)+1)) then the value of (x^(2)+2x-1) is

    Text Solution

    |

  17. If x+(1)/(x)=sqrt(13), then (3x)/((x^(2)-1)) equals to

    Text Solution

    |

  18. If x+sqrt(5)=5+sqrt(y) and x,y are positive integers , then the value ...

    Text Solution

    |

  19. If c+(1)/(c )=sqrt(3), then the value of c^(3)+(1)/(c^(3)) is equal to

    Text Solution

    |

  20. What would be the remainder when 10^(6)-12 is divided by 9 ?

    Text Solution

    |