Home
Class 14
MATHS
Let ABC be an equilateral triangle and A...

Let ABC be an equilateral triangle and `AX, BY, CZ `be the altitudes. Then the right statement out of the four given responses is

A

`AX = BY = CZ `

B

`AX != BY = CZ `

C

`AX = BY != CZ`

D

`AX != BY != CZ`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem regarding the altitudes of an equilateral triangle ABC, we will follow these steps: ### Step 1: Understand the properties of an equilateral triangle An equilateral triangle has all three sides equal and all three angles equal to 60 degrees. Let the length of each side be denoted as \( A \). ### Step 2: Define the altitudes The altitudes \( AX \), \( BY \), and \( CZ \) are the perpendicular segments drawn from each vertex to the opposite side. In an equilateral triangle, these altitudes also bisect the opposite sides. ### Step 3: Calculate the length of the altitude Using the Pythagorean theorem, we can calculate the length of the altitude from vertex \( A \) to side \( BC \): - In triangle \( ABX \): - Hypotenuse \( AB = A \) - Base \( BX = \frac{A}{2} \) (since \( AX \) bisects \( BC \)) Using the Pythagorean theorem: \[ AB^2 = AX^2 + BX^2 \] \[ A^2 = AX^2 + \left(\frac{A}{2}\right)^2 \] \[ A^2 = AX^2 + \frac{A^2}{4} \] Subtracting \( \frac{A^2}{4} \) from both sides: \[ A^2 - \frac{A^2}{4} = AX^2 \] \[ \frac{3A^2}{4} = AX^2 \] Taking the square root: \[ AX = \frac{\sqrt{3}}{2} A \] ### Step 4: Repeat for the other altitudes By symmetry, the calculations for altitudes \( BY \) and \( CZ \) will yield the same result: - For altitude \( BY \): \[ BY = \frac{\sqrt{3}}{2} A \] - For altitude \( CZ \): \[ CZ = \frac{\sqrt{3}}{2} A \] ### Step 5: Conclusion Since all three altitudes are equal: \[ AX = BY = CZ = \frac{\sqrt{3}}{2} A \] ### Final Answer The correct statement is that all altitudes \( AX \), \( BY \), and \( CZ \) are equal. ---
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    KIRAN PUBLICATION|Exercise QUESTIONS ASKED IN PREVIOUS SSC EXAMS (TYPE-II)|25 Videos
  • GEOMETRY

    KIRAN PUBLICATION|Exercise QUESTIONS ASKED IN PREVIOUS SSC EXAMS (TYPE-III)|109 Videos
  • DISCOUNT

    KIRAN PUBLICATION|Exercise Test Yourself |10 Videos
  • LCM AND HCF

    KIRAN PUBLICATION|Exercise Test Yourself |18 Videos

Similar Questions

Explore conceptually related problems

ABC is an equilateral triangle of side 2a. Find each of its altitudes.

Each side of an equilateral triangle is 6 cm. Its altitude is

Construct an equilateral triangle ABC of side 6cm.

Delta ABC is an equilateral triangle of side 2a units. Find each of its altitudes.

In an equilateral triangle ABC (Fig. 6.2), AD is an altitude. Then 4AD^2 is equal to

In an equilateral triangle DeltaPQR, PT is an altitude. Then the value of 4PT^(2) is:

In an equilateral triangle of side 3sqrt(3) cm then length of the altitude is

If each side of an equilateral triangle is 12 cm, then its altitude is equal to:

In an equilateral triangle with side a, prove that the altitude is of length (asqrt3)/2

KIRAN PUBLICATION-GEOMETRY-TRY YOURSELF
  1. Let ABC be an equilateral triangle and AX, BY, CZ be the altitudes. Th...

    Text Solution

    |

  2. The angles of a triangle are in the ratio of 1:2:3. What will be the r...

    Text Solution

    |

  3. In Delta ABC, AB = 6 cms, BC = 10 cms, AC = 8cm and ADIBC. Find the va...

    Text Solution

    |

  4. ABC is a right angled triangle in which /C = 90^@. If BC = a, AB = c ,...

    Text Solution

    |

  5. Two chords AB and CD of a circle with centre O intersect at point P wi...

    Text Solution

    |

  6. Two circles whose radii are 10 cm and 8 cm,intersect each other and th...

    Text Solution

    |

  7. A triangle ABC is inscribed in a circle and the bisectors of the angle...

    Text Solution

    |

  8. PQRS is a rhombus in which /SPQ = 64^@. Equilateral triangles PXQ and ...

    Text Solution

    |

  9. Tangents PT and QT are drawn on a circle of radius 5 cm from point T w...

    Text Solution

    |

  10. PQ is a chord of length 8 cm, of a circle with centre O and of radius ...

    Text Solution

    |

  11. AB = 2r is the diameter of a circle. If a chord CD Interests AB at rig...

    Text Solution

    |

  12. ABCD is a trapezium in which AB is parallel to DC, AD = BC, AB = 6 cm,...

    Text Solution

    |

  13. The diagram below represents three circular garbage cans, each of diam...

    Text Solution

    |

  14. In the given figure, AB||CD, then the value of x will be

    Text Solution

    |

  15. The parallel sides AB and CD of a trapezium ABCD are 9 cm and 3 cm res...

    Text Solution

    |

  16. If D, E and Fare the mid points of BC, CA and AB respectively of the A...

    Text Solution

    |

  17. A chord AB of length 16 cm is drawn in a circle of diameter 20 cm. If ...

    Text Solution

    |

  18. In DeltaPQR ,right-angled at Q,X,Y and Z are points on sides PR, RQ an...

    Text Solution

    |

  19. In the given figure, the tangent at C meets the diameter AB produced a...

    Text Solution

    |

  20. Three circles of diameter 24 cm each touch each other externally. Find...

    Text Solution

    |

  21. In right-angled DeltaABC, D and E trisect BC. Find the value of 8 ((A...

    Text Solution

    |