Home
Class 12
MATHS
Prove that |{:(b^(2)+c^(2),ab,ac),(ab,...

Prove that
`|{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b^(2)):}|` =`4a^(2)b^(2)c^(2)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-III (True or False questions)|25 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Show that |{:(a^(2)+x^(2),ab-cx,ac+bx),(ab+cx,b^(2)+x^(2),bc-ax),(ac-bx,bc+ax,c^(2)+x^(2)):}|=|{:(x,c,-b),(-c,x,a),(b,-a,x):}|^(2) .

If f(x)={:abs((x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))):} , then find f'(x).

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

The determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is divisible by

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

ACCURATE PUBLICATION-DETERMINANTS-(Question carrying 2 marks)
  1. If Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}|"...

    Text Solution

    |

  2. Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,...

    Text Solution

    |

  3. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  4. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  5. By using properties of determinants, show that : |[1,x,x^2],[x^2,1,x...

    Text Solution

    |

  6. Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2...

    Text Solution

    |

  7. Prove that |{:((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)...

    Text Solution

    |

  8. Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(...

    Text Solution

    |

  9. Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-...

    Text Solution

    |

  10. Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b...

    Text Solution

    |

  11. Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-...

    Text Solution

    |

  12. If a+b+c ne 0 and |{:(a,b,c),(b,c,a),(c,a,b):}|=0, then using properti...

    Text Solution

    |

  13. Using the properties of determinants, prove that following : |{:(1,x...

    Text Solution

    |

  14. If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, using properties of dete...

    Text Solution

    |

  15. Show that triangle = |[(y+z)^2,xy,zx],[xy,(x+z)^2,yz],[xz,yz,(x+y)^2]|...

    Text Solution

    |

  16. If Delta=|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| and Delta(1)=|{:(1,...

    Text Solution

    |

  17. Using the properties of determinants show that : |[[1, a^2+bc, a^3],[1...

    Text Solution

    |

  18. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  19. Find the equation of the line joining A(1,3) and B(0,0) using determin...

    Text Solution

    |

  20. For the matrix A=[{:(3,2),(1,1):}], find the numbers a and b such that...

    Text Solution

    |