Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that: `|[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]| = (1+pxyz)(x-y)(y-z)(z-x)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise Type-III (True or False questions)|25 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DIFFERENTAL QUATIONS

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|41 Videos

Similar Questions

Explore conceptually related problems

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3

Using the properties of determinants, show that : |[[x, y, z],[x^2, y^2, z^2],[x,y,z]]|= 0 .

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,z],[x,y,a+z]]|=a^2(a+x+y+z)

Using properties of determinants, prove that : {:|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

Show that |(1,x^2,x^3),(1,y^2,y^3),(1,z^2,z^3)| = (x-y),(y-z)(z-x)(xy+yz+zx)

Prove that |[[x,y,z],[x^2,y^2,z^2],[x^3,y^3,z^3]]|= xyz (x-y)(y-z)(z-x)

ACCURATE PUBLICATION-DETERMINANTS-(Question carrying 2 marks)
  1. If Delta=|{:(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1):}|"...

    Text Solution

    |

  2. Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,...

    Text Solution

    |

  3. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  4. If a, b, c are positive and unequal, show that value of the determinan...

    Text Solution

    |

  5. By using properties of determinants, show that : |[1,x,x^2],[x^2,1,x...

    Text Solution

    |

  6. Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2...

    Text Solution

    |

  7. Prove that |{:((a+1)(a+2),a+2,1),((a+2)(a+3),a+3,1),((a+3)(a+4),a+4,1)...

    Text Solution

    |

  8. Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(...

    Text Solution

    |

  9. Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-...

    Text Solution

    |

  10. Prove that |{:(b^(2)+c^(2),ab,ac),(ab,c^(2)+a^(2),bc),(ac,bc,a^(2)+b...

    Text Solution

    |

  11. Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-...

    Text Solution

    |

  12. If a+b+c ne 0 and |{:(a,b,c),(b,c,a),(c,a,b):}|=0, then using properti...

    Text Solution

    |

  13. Using the properties of determinants, prove that following : |{:(1,x...

    Text Solution

    |

  14. If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, using properties of dete...

    Text Solution

    |

  15. Show that triangle = |[(y+z)^2,xy,zx],[xy,(x+z)^2,yz],[xz,yz,(x+y)^2]|...

    Text Solution

    |

  16. If Delta=|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}| and Delta(1)=|{:(1,...

    Text Solution

    |

  17. Using the properties of determinants show that : |[[1, a^2+bc, a^3],[1...

    Text Solution

    |

  18. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  19. Find the equation of the line joining A(1,3) and B(0,0) using determin...

    Text Solution

    |

  20. For the matrix A=[{:(3,2),(1,1):}], find the numbers a and b such that...

    Text Solution

    |