Home
Class 12
MATHS
If f(x)=int(0)^(x)tsintdt, then f'(x)=xs...

If `f(x)=int_(0)^(x)tsintdt`, then `f'(x)=xsinx`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 2 MARKS|12 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 1 MARK - TYPE-II|21 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^xtsintdt , then f'(x) is :

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

Statement I If f (x) = int_(0)^(1) (xf(t)+1) dt, then int_(0)^(3) f (x) dx =12 Statement II f(x)=3x+1

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

A function f(x) satisfies f(x)=sinx+int_(0)^(x)f'(t)(2sint-sin^(2)t)dt Then f(x) = (a) (x)/(1- sin x) " " (b) (sinx)/(1-sinx) (c) (1-cos x)/(cos x) " " (d) (tanx)/(1- sin x)

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+ (g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be