Home
Class 12
MATHS
If f(x) is an odd function, then int(-a)...

If f(x) is an odd function, then `int_(-a)^(a)f(x)dx=0`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 2 MARKS|12 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 1 MARK - TYPE-II|21 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

Prove that if f is an odd function, then int_-a^a f(x)dx =0 . Use it to evaluate int_-1^1 log((2+x)/(2-x)) dx

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)dx)/(f(cosx)+f(sin^2x))

int_(a)^(b)f(x)dx=F(b)-F(a) .

If ‘f' is an odd function and if lim_(x rarr 0) f(x) exists, prove that this limit must be zero.

If f(x) is a function satisfying f(1/x)+x^2f(x)=0 for all nonzero x , then evaluate int_(sintheta)^(cos e ctheta)f(x)dx

True or False: If f is an odd function defined on an interval [-a,a], a ne 0, then underset(-a)overseta int f(x)dx=0 .

Fill ups: If f is an odd function and g is an even function, then underset(-a)overset(a)int f(x)g(x)dx is equal to………… .

If f(x) is a continous function such that f(x)|0,AA x in[2,10] and int_(4)^(8)f(x) dx=0 , then find f (6)

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to (a) a+b " " (b) ab+b (c) ab+a " " (d) ab