Home
Class 12
MATHS
int(a)^(b)f(x)dx=int(a)^(b)f(a+b-x)dx....

`int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 2 MARKS|12 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 1 MARK - TYPE-II|21 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

int_(a)^(b)f(x)dx=int_(b)^(a)f(x)dx .

int_(0)^(2a)f(x)dx=int_(0)^(a)f(x)dx+int_(0)^(a)f(2a-x)dx .

int_(a)^(b)f(x)dx=F(b)-F(a) .

If f and g are continuous functions on [0,a] satisfying f(x)=(a-x) and g(x)+g(a-x)=2 , then show that int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx .

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to (a) a+b " " (b) ab+b (c) ab+a " " (d) ab

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .