Home
Class 12
MATHS
int(0)^(pi/2)logtanxdx=0....

`int_(0)^(pi/2)logtanxdx=0`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 2 MARKS|12 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 1 MARK - TYPE-II|21 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_0^(pi/2) sin2xlogtanxdx=0

Show that (i) int_(0)^(pi//2)f(sinx) d x=int_(0)^(pi//2)f(cos x) d x (ii) int_(0)^(pi//2)f(tan x) d x=int_(0)^(pi//2)f(cot x) d x (iii) int_(0)^(pi//2)f(sin 2 x) sin xd x = int_(o)^(pi//2)f(sin 2x).cosx d x

Using property of define integrals, prove that : int_(0)^(pi//2)logcos x dx=(-pi)/2log2

Using property of define integrals, prove that : int_(0)^(pi//2)sin2xlogtanx dx=0

Evaluate : int_0^(pi/2) log sin x dx .

Evaluate int_(0)^(pi/2) cosx dx

Evaluate int_(0)^(pi/2) sinx dx