Home
Class 12
MATHS
Prove that : int(0)^(pi/4)(sqrt(tanx)+sq...

Prove that : `int_(0)^(pi/4)(sqrt(tanx)+sqrt(cotx))dx=sqrt(2).pi/2`.

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 4 MARKS|8 Videos
  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 1 MARK - TYPE-III|19 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

Show that : int_(0)^(pi//2) (sqrt(tan x) +sqrt(cot x))dx=sqrt(2)pi .

By using the properties of definte, prove that int_(0)^(pi//2)(sqrt(cotx))/(sqrt(tanx)+sqrt(cotx))=(pi)/4

Show that : int_(0)^(pi/2)sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx=pi/4 .

By using the properties of definte, prove that int_(0)^(pi//2)(dx)/(1+sqrt(cotx))=(pi)/4

Prove that: underset0overset(pi/4)int (sqrttanx+sqrtcotx)dx=pi/sqrt2

By using the properties of definte, prove that int_(0)^(a)(sqrt(x)dx)/(sqrt(x)+sqrt(a-x))=a/2

Evalualte : int (sqrt(tanx)+sqrt(cotx))dx .