Home
Class 12
MATHS
Show that : int(0)^(pi)x/(1+sinx)dx=pi...

Show that :
`int_(0)^(pi)x/(1+sinx)dx=pi`

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    ACCURATE PUBLICATION|Exercise QUESTION CARRYING 2 MARKS|12 Videos
  • CONTINUITY

    ACCURATE PUBLICATION|Exercise QUESTIONS CARRYING 4 MARKS|17 Videos
  • DETERMINANTS

    ACCURATE PUBLICATION|Exercise (Question carrying 6 marks)|7 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^(pi)xf(sinx)dx=(pi)/2 int_(0)^(pi)"fr"(sinx)dx .

Show that (i) int_(0)^(pi//2)f(sinx) d x=int_(0)^(pi//2)f(cos x) d x (ii) int_(0)^(pi//2)f(tan x) d x=int_(0)^(pi//2)f(cot x) d x (iii) int_(0)^(pi//2)f(sin 2 x) sin xd x = int_(o)^(pi//2)f(sin 2x).cosx d x

Show that (a) int_(0)^(pi/2) sin x dx=1 (b) int_(0)^(pi) cosx dx=0

Show that : int_(0)^(pi/2)sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx=pi/4 .

Evaluate int_(0)^(pi/2) sinx dx

Using properties of definite integrals, show that int_(0)^(pi//2)(xdx)/(sinx+cosx)=(pi)/(2sqrt(2))log(sqrt(2)+1)

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Show that : int_(0)^(pi//2) (sqrt(tan x) +sqrt(cot x))dx=sqrt(2)pi .