Home
Class 12
MATHS
int(0)^(1)(2x)/(5x^(2)+1)dx=log6...

`int_(0)^(1)(2x)/(5x^(2)+1)dx=log6`

A

`(1)/(2) log 6`

B

`(1)/(3) log 6`

C

`(1)/(4)log 6`

D

`(1)/(5)log 6`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-B)|8 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-C)|8 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION C|15 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Evaluate the definite integral: int_0^1(2x+3)/(5x^2+1)dx

Evaluate: int_(0)^(1) log ((1)/(x)-1)dx

Using property of define integrals, prove that : int_(0)^(1) (log(1+x))/(1+x^(2))=(pi)/8log2