Home
Class 12
MATHS
Simplify: tan^(-1)((sqrt(1+x^(2))-1)/x)...

Simplify: `tan^(-1)((sqrt(1+x^(2))-1)/x)`

Text Solution

Verified by Experts

The correct Answer is:
`1/2 tan^(-1)x`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos
  • SAMPLE QUESTION PAPER-VII

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos

Similar Questions

Explore conceptually related problems

Simplify : cot^(-1) (sqrt(1 + x^(2)) - x) .

Write the following function in the simplest form: tan^-1 ((sqrt(1+x^2)-1)/x), xne0

Prove that derivative of tan^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t. tan^(-1) x is independent of x.

Write tan^(-1)((sqrt(1+x^(2))-1)/(x)),xne0 simplest form.

Differentiate tan^(-1) ((sqrt(1 + x^2) - 1)/(x)) w.r.t.x .

Differentiate tan^(-1)((sqrt(1 + x^2) - 1)/(x)) w.r.t.x.

Differentiate tan^(-1) ((sqrt(1 + x^2) - 1)/(x)) w.r.t. sin^(-1) ((2x)/(1 + x^2)) .

Differentiate tan^(-1)[(sqrt(1 + x^2) - 1)/(x)] with respect to x.

Differentiate tan^(-1)((sqrt(1 + a^2 x^2) - 1)/(ax)) w.r.t.x.

Express "tan"^(-1)(sqrt(1+x^(2))-1)/(x),xne0 in simplest form.