Home
Class 12
MATHS
If x,y,z are different and Delta= {:|(x,...

If x,y,z are different and `Delta= {:|(x,x^2,1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|=0`, show that xyz=-1

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-C)|8 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION C|15 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

Show that |(1,x^2,x^3),(1,y^2,y^3),(1,z^2,z^3)| = (x-y),(y-z)(z-x)(xy+yz+zx)

Prove that: {:|(1,x,x^3),(1,y,y^3),(1,z,z^3)| = (x-y)(y-z)(z-x)(x+y+z)

Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]| = (1+pxyz)(x-y)(y-z)(z-x)

If x != y != z and |[[x,x^2,1+x^3],[y,y^2,1+y^3],[z,z^2,1+z^3]]|=0 then using properties of determinants, show that xyz= -1.

If xneynez and |[x,x^3,x^4-1],[y,y^3,y^4-1],[z,z^3,z^4-1]|=0 , then prove that : xyz(xy+yz+zx)=x+y+z

Prove the following identities : |{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x) .