Home
Class 12
MATHS
Show that: tan^(-1)[(sqrt(1+x^(2)) + sqr...

Show that: `tan^(-1)[(sqrt(1+x^(2)) + sqrt(1-x^(2)))/(sqrt(1 +x^(2))- sqrt(1-x^(2)))]=pi/4 +1/2 cos^(-1) x^(2), -1 lt x lt 1`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos
  • SAMPLE QUESTION PAPER-VII

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos

Similar Questions

Explore conceptually related problems

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

If tan^(-1). (sqrt((1+x^(2))) - sqrt((1-x^(2))))/(sqrt((1+x^(2)))+sqrt((1-x^(2))))=alpha" , then " x^(2) is

Prove that tan^-1((sqrt(1+x)- (sqrt(1-x)))/(sqrt(1+x) + (sqrt(1-x)))) = pi/4 - 1/2 cos^-1 x

Differentiate tan^-1{( sqrt (1+x^2) +sqrt (1-x^2))/ (sqrt(1+x^2)-sqrt(1-x^2))} w.r.t.x

Prove that cot^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/(4)+(1)/(2)cos^(-1)x

Prove that : tan^-1[(sqrt(1+x) - sqrt(1-x))/(sqrt1+x + sqrt1-x)] = pi/4 - 1/2cos^-1x

Differentiatie tan^-1((sqrt(1+x^2) - sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) w.r.t. sin^-1((2x)/(1+x^2))