Home
Class 12
MATHS
Prove int(dx)/sqrt(a^(2) - x^(2)) = sin...

Prove `int(dx)/sqrt(a^(2) - x^(2)) = sin^(-1)( x/a) + c, a gt 0`.

Text Solution

Verified by Experts

The correct Answer is:
True
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-VII

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-VII

    ACCURATE PUBLICATION|Exercise SECTION-C|8 Videos
  • SAMPLE QUESTION PAPER-VII

    ACCURATE PUBLICATION|Exercise SECTION-A (FILL IN THE BLANKS)|8 Videos
  • SAMPLE QUESTION PAPER-VI

    ACCURATE PUBLICATION|Exercise SECTION C|15 Videos
  • SAMPLE QUESTION PAPER-VIII

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(a^2-x^2))dx = sin^-1(x/a)+C

int (2x)/sqrt(1-x^2-x^4) dx=

prove int(dx)/(sqrt(x^2-a^2)) = log|x+sqrt(x^2-a^2)|+c

Evaluate int_0^1 (dx) /(sqrt(1-x^2)

prove int(1)/(a^2+x^2)dx = 1/a tan^-1(x/a) +C

If int (2^x)/(sqrt(1-4^(x)))dx = k sin^(-1) (2^(x))+C , then k is equal to :

prove intsqrt(a^2-x^2) dx = x/2sqrt(a^2-x^2)+(a^2)/(2)sin^-1(x)/(a)+c

int (x(sin^-1x))/(sqrt(1-x^2))dx

Prove that : d/dx[x/2sqrt(a^2-x^2)+(a^2)/(2)sin^-1(x/a)]=sqrt(a^2-x^2)