Home
Class 12
MATHS
If y = ae^(mx) + be^(-mx),"then"(d^(2)y)...

If `y = ae^(mx) + be^(-mx),"then"(d^(2)y)/(dx^(2))-m^(2)y` = .........................

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-C|7 Videos
  • SAMPLE QUESTION PAPER-IV

    ACCURATE PUBLICATION|Exercise (SECTION D) |6 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos

Similar Questions

Explore conceptually related problems

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

If y = Ae^(mx) + Be^(nx) , Show that (d^2 /dx^2 y)-(m+n)dy/dx+mny = 0

Find (d^2y)/(dx^2) when y = x^x

Find the second order derivative of the following functions If y = ae^(mx) + be^(-mx) , prove that (d^2y)/(dx^2) - m^2y = 0

If y^2 = ax^2 + b , prove that (d^2y)/(dx^2) = ab/y^3

If x^2 + y^2 = a^2 , prove that (d^2y)/(dx^2) = -a^2/y^3

If y=x^(x) , prove that (d^(2)y)/(dx^(2))-(1)/(y)((dy)/(dx))^(2)-(y)/(x)=0 .

Find (d^2y)/(dx^2) if y = tan^(-1) x .

Find (d^2y)/dx^2 , if y = logx