Home
Class 12
MATHS
(ABC)^(-1) = C^(-1) B^(-1) A^(-1)...

`(ABC)^(-1) = C^(-1) B^(-1) A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
True
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-C|7 Videos
  • SAMPLE QUESTION PAPER-IV

    ACCURATE PUBLICATION|Exercise (SECTION D) |6 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos

Similar Questions

Explore conceptually related problems

If B and C are non-singular matrices and O is null matrix, then show that [[A, B],[ C ,O]]^(-1)=[[O, C^(-1)],[B^(-1),-B^-1A C^(-1)]]dot

If a^(-1),b^(-1),c^(-1),d^(-1) are in A.P., then show that : b=(2ac)/(a+c) and b/d=(3a-c)/(a+c) .

If a, b and c are any three vectors and their inverse are a^(-1), b^(-1) and c^(-1) and [a b c]ne0 , then [a^(-1) b^(-1) c^(-1)] will be

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=0 then

If A = 1/1 cot ^(-1) (1/1) + 1/2 cot^(-1) (1/2) + 1/3 cot ^(-1) ( 1/3) " and " B = 1 cot^(-1) ( 1) + 2 cot^(-1) (2) + 3 cot^(-1) (3) " then " |B - A| " is equal to " (a pi )/b + c/d cot ^(-1) (3) where a,b,c,d in N are in their lowest form , find ( b -a - c - d)

If tan^(-1) . b/(c+a) + tan^(-1) . (c)/(a + b) = pi/4 where a, b, c , are the sides of Delta ABC",then" Delta ABC is

If the triangle ABC whose vertices are A(-1, 1, 1), B(1, -1, 1) and C(1, 1, -1) is projected on xy-plane, then the area of the projection triangles is…..

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

Prove that for 0 cot^-1 (1+ab)/(a-b) + cot^-1 (1+bc)/(b-c) + cot^-1 (1+ca)/(c-a) = pi