Home
Class 12
MATHS
If sin y = x sin (a + y), then prove tha...

If sin y = x sin (a + y), then prove that `(dy)/(dx) = (sin^(2) (a + y))/(sin a)`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-D|6 Videos
  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-B|8 Videos
  • SAMPLE QUESTION PAPER-IV

    ACCURATE PUBLICATION|Exercise (SECTION D) |6 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos

Similar Questions

Explore conceptually related problems

If sin y = x cos (a + y) , prove that (dy)/(dx) = (cos^2 (a + y))/(cos a)

If x sin (a+y) + sin a cos (a+y) = 0, then prove that : dy/dx = (sin^2(a+y))/(sina)

If sin x = y sin (x + b) , show that (dy)/(dx) = (sin b)/(sin^2 (x + b))

If sin y = x sin (a+y), then show that: dy/dx=(sina)/(1-2xcosa+x^2)

If y = x sin(a+y), prove that dy/dx = (sin^2(a+y))/(sin(a+y)-ycos(a+y))

If y = 2 cos x -6 sin x , prove that (d^2y)/(dx^2)+y = 0

If siny = xsin(a+y) , prove that dy/dx=sin^2(a+y)/sina