Home
Class 12
MATHS
Find the distance of the point (-1,-5,-1...

Find the distance of the point `(-1,-5,-10)` from the point of intersection of the line `vec(r)=2hat(i)-hat(j)+2hat(k)+lamda(3hat(i)+4hat(j)+2hat(k))` and the plane `vec(r)*(hat(i)-hat(j)+hat(k))=5`

Text Solution

Verified by Experts

The correct Answer is:
13 units
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER-IX

    ACCURATE PUBLICATION|Exercise SECTION-C|7 Videos
  • SAMPLE QUESTION PAPER-IV

    ACCURATE PUBLICATION|Exercise (SECTION D) |6 Videos
  • SAMPLE QUESTION PAPER-V

    ACCURATE PUBLICATION|Exercise (SECTION-D)|6 Videos

Similar Questions

Explore conceptually related problems

Find the distance of a point (3,4,5) from the point of intersection of the line vec(r)=3hat(i)+4hat(j)+5hat(k)+lamda(hat(i)+2hat(j)+3hat(k)) and the plane vec(r)*(hat(i)+hat(j)+hat(k))=2

Find the angle between the line vec(r)=2hat(i)-hat(j)+2hat(k)=2hat(i)-hat(j)+2hat(k) the plane vec(r)*(2hat(i)-hat(j)+hat(k))

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Find the shortest distance between the lines vec(r)=(hat(i)+2hat(j)+hat(k))+lamda(hat(i)-hat(j)+hat(k)) and vec(r)=2hat(i)-hat(j)-hat(k)+mu(3hat(i)-hat(j)+hat(k))

Find the equation of the straight line passing through the point (2,-1,3) and perpendicular to the lines vec(r)=(hat(i)+hat(j)-hat(k))+lamda(2hat(i)+hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)-hat(k))+mu(hat(i)+hat(j)+hat(k)) .

Find the shortest distance between the line vec(r)=hat(i)-7hat(j)-2hat(k)+lamda(hat(i)+3hat(j)+2hat(k)) and vec(r)=3hat(i)+4hat(j)-2hat(k)+mu(-hat(i)+2hat(j)+hat(k)) .

Find the vector equation of the plane through the intersection of the planes vec(r)*(hat(i)+hat(j)+hat(k))=6 and vec(r)*(2hat(i)+3hat(j)+4hat(k))=-5 and the point (1,1,1).

Find the vector equation of the plane through the intersection of the planes vec(r)*(2hat(i)-2hat(j)+3hat(k))=2,vec(r)*(hat(i)-3hat(j)+2hat(k))=-3 and the point (1,2,3).

Find the shortest distance between the lines vec(r)=(4hat(i)-hat(j))+lamda(hat(i)+4hat(j)-3hat(k)) and vec(r)=(hat(i)-hat(j)+2hat(k))+mu(2hat(i)+3hat(j)-2hat(k))