Home
Class 12
MATHS
If log(2) (5.2^(x) + 1), log(4) (2^(1-x)...

If `log_(2) (5.2^(x) + 1), log_(4) (2^(1-x) + 1)` and 1 are in A.P., then x equals

A

`log_(2)5`

B

`1 - log_(2) 5`

C

`log_(5) 2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( x \) such that the logarithmic expressions \( \log_2(5.2^x + 1) \), \( \log_4(2^{1-x} + 1) \), and \( 1 \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Understanding Arithmetic Progression**: If three terms \( a, b, c \) are in A.P., then the condition is: \[ 2b = a + c \] Here, let: - \( a = \log_2(5.2^x + 1) \) - \( b = \log_4(2^{1-x} + 1) \) - \( c = 1 \) 2. **Setting Up the Equation**: From the A.P. condition, we have: \[ 2 \log_4(2^{1-x} + 1) = \log_2(5.2^x + 1) + 1 \] 3. **Converting Logarithm Base**: We can convert \( \log_4 \) to \( \log_2 \) using the change of base formula: \[ \log_4(y) = \frac{\log_2(y)}{\log_2(4)} = \frac{\log_2(y)}{2} \] Therefore, we can rewrite \( b \): \[ b = \log_4(2^{1-x} + 1) = \frac{1}{2} \log_2(2^{1-x} + 1) \] 4. **Substituting Back**: Substitute \( b \) back into the A.P. equation: \[ 2 \cdot \frac{1}{2} \log_2(2^{1-x} + 1) = \log_2(5.2^x + 1) + 1 \] Simplifying gives: \[ \log_2(2^{1-x} + 1) = \log_2(5.2^x + 1) + 1 \] 5. **Using Properties of Logarithms**: The equation can be rewritten as: \[ \log_2(2^{1-x} + 1) = \log_2(5.2^x + 1) + \log_2(2) \] This implies: \[ 2^{1-x} + 1 = 2(5.2^x + 1) \] 6. **Expanding and Rearranging**: Expanding the right side: \[ 2^{1-x} + 1 = 10.2^x + 2 \] Rearranging gives: \[ 2^{1-x} - 10.2^x - 1 = 0 \] 7. **Substituting \( t = 2^x \)**: Let \( t = 2^x \). Then \( 2^{1-x} = \frac{2}{t} \): \[ \frac{2}{t} - 10t - 1 = 0 \] Multiplying through by \( t \) to eliminate the fraction: \[ 2 - 10t^2 - t = 0 \] Rearranging gives: \[ 10t^2 + t - 2 = 0 \] 8. **Solving the Quadratic Equation**: Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 10, b = 1, c = -2 \): \[ t = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 10 \cdot (-2)}}{2 \cdot 10} \] \[ t = \frac{-1 \pm \sqrt{1 + 80}}{20} = \frac{-1 \pm 9}{20} \] This gives two potential solutions: \[ t = \frac{8}{20} = \frac{2}{5} \quad \text{(valid, since } t > 0\text{)} \] \[ t = \frac{-10}{20} = -\frac{1}{2} \quad \text{(not valid)} \] 9. **Finding \( x \)**: Since \( t = 2^x \), we have: \[ 2^x = \frac{2}{5} \] Taking logarithm base 2: \[ x = \log_2\left(\frac{2}{5}\right) = \log_2(2) - \log_2(5) = 1 - \log_2(5) \] ### Final Answer: Thus, the value of \( x \) is: \[ x = 1 - \log_2(5) \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If log_(10)(2),log_(10)(2^(x)+1),log_(10)(2^(x)-3) are in A.P then x is equal to (i)log_(2)(5)( ii) log_(2)(-1) (iii) log_(2)((1)/(5))( iv) log_(5)(2)

If log_(10) 2, log_(10)(2^(x) -1) , log_(10)(2^(x)+3) are in AP, then what is x equal to?

If log2,log(2^(x)-1) and log(2^(x)+3) are in A.P.then x is equal to

If 1,log_(2)(3^(1-x)+2),log_(2)(4*3^(3)-1) are in A.P then x equals to

If 1,log_(9)(3^(1-x)+2),log_(3)(4*3^(x)-1) are in A.P then x equals to