Home
Class 12
MATHS
If (3 + 5 + 7 +...+n)/(5 + 8 + 11 +....+...

If `(3 + 5 + 7 +...+n)/(5 + 8 + 11 +....+ "10 terms") = 7`, the value of n is

A

35

B

36

C

37

D

40

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the equation: \[ \frac{(3 + 5 + 7 + \ldots + n)}{(5 + 8 + 11 + \ldots + \text{10 terms})} = 7 \] ### Step 1: Identify the first series The first series is \( 3 + 5 + 7 + \ldots + n \). This is an arithmetic progression (AP) where: - First term \( a = 3 \) - Common difference \( d = 2 \) ### Step 2: Find the number of terms in the first series To find the number of terms \( k \) in the series, we can express \( n \) in terms of \( k \): \[ n = a + (k-1)d = 3 + (k-1) \cdot 2 \] \[ n = 2k + 1 \] ### Step 3: Calculate the sum of the first series The sum \( S_k \) of the first \( k \) terms of an AP is given by: \[ S_k = \frac{k}{2} \cdot (2a + (k-1)d) \] Substituting the values: \[ S_k = \frac{k}{2} \cdot (2 \cdot 3 + (k-1) \cdot 2) = \frac{k}{2} \cdot (6 + 2k - 2) = \frac{k}{2} \cdot (2k + 4) = k(k + 2) \] ### Step 4: Identify the second series The second series is \( 5 + 8 + 11 + \ldots \) for 10 terms. This is also an AP where: - First term \( a = 5 \) - Common difference \( d = 3 \) ### Step 5: Calculate the sum of the second series The sum \( S_{10} \) of the first 10 terms is: \[ S_{10} = \frac{n}{2} \cdot (2a + (n-1)d) = \frac{10}{2} \cdot (2 \cdot 5 + (10-1) \cdot 3) \] \[ = 5 \cdot (10 + 27) = 5 \cdot 37 = 185 \] ### Step 6: Set up the equation Now we substitute \( S_k \) and \( S_{10} \) into the original equation: \[ \frac{k(k + 2)}{185} = 7 \] ### Step 7: Solve for \( k \) Multiplying both sides by 185 gives: \[ k(k + 2) = 1295 \] Rearranging: \[ k^2 + 2k - 1295 = 0 \] ### Step 8: Factor the quadratic equation To factor \( k^2 + 2k - 1295 \), we look for two numbers that multiply to \(-1295\) and add to \(2\). The numbers \(35\) and \(-37\) work: \[ (k + 37)(k - 35) = 0 \] ### Step 9: Find the values of \( k \) Setting each factor to zero gives: \[ k + 37 = 0 \quad \Rightarrow \quad k = -37 \quad (\text{not valid since } k \text{ must be positive}) \] \[ k - 35 = 0 \quad \Rightarrow \quad k = 35 \] ### Step 10: Find the value of \( n \) Now substituting \( k = 35 \) back to find \( n \): \[ n = 2k + 1 = 2 \cdot 35 + 1 = 70 + 1 = 71 \] Thus, the value of \( n \) is \( \boxed{71} \).
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If (3+5+7+ . . . .+"n terms")/(5+8+11+ . . .. +"10 terms")=7 , then the value of n, is

2 + 4 + 7 + 11 + 16 + .... to n term =

If (3+5+7+... upto n terms )/(5+8+113... upto 10 terms )=7, then find the value of n.

if (3 +5+7+9+…. " up to 35 terms " )/(5+8+11+ …. " up to n terms ")=7 , find the value of n.

If 3 ( 5x - 7) - 4 ( 8x - 13) = 2 ( 9x - 11) - 17, then the value of ( 7x - 5)/(11 x - 9) is

If (5 + 9 + 13 + .... rarr nterms) / (7 + 9 + 11 + ... rarr (n + 1) terms) = (17) / (16), then n =

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If (5+9+13+..."upto n terms")/(7+9+11+..."upto 12 terms")=(5)/(12) , then n is equal to

If (m-5, n + 3) = (7, 9), find the values of m and n.