Home
Class 12
MATHS
If log(sqrt(5)) x + log(5^(1//3)) x + lo...

If `log_(sqrt(5)) x + log_(5^(1//3)) x + log_(5^(1//4)) x + ...` up to 7 terms = 35, then the value of x is equal to

A

5

B

`5^(2)`

C

`5^(3)`

D

`sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( x \). ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression given is: \[ \log_{\sqrt{5}} x + \log_{5^{1/3}} x + \log_{5^{1/4}} x + \ldots \text{ (up to 7 terms)} = 35 \] We need to rewrite each logarithm in terms of a common base. 2. **Changing the Base**: We can use the change of base formula: \[ \log_{a^b} c = \frac{1}{b} \log_a c \] Therefore: - \(\log_{\sqrt{5}} x = \frac{1}{1/2} \log_5 x = 2 \log_5 x\) - \(\log_{5^{1/3}} x = \frac{1}{1/3} \log_5 x = 3 \log_5 x\) - \(\log_{5^{1/4}} x = \frac{1}{1/4} \log_5 x = 4 \log_5 x\) - Continuing this way, we can write the terms as: - \(\log_{5^{1/5}} x = 5 \log_5 x\) - \(\log_{5^{1/6}} x = 6 \log_5 x\) - \(\log_{5^{1/7}} x = 7 \log_5 x\) 3. **Summing the Terms**: Now we can sum these terms: \[ 2 \log_5 x + 3 \log_5 x + 4 \log_5 x + 5 \log_5 x + 6 \log_5 x + 7 \log_5 x + 8 \log_5 x \] This simplifies to: \[ (2 + 3 + 4 + 5 + 6 + 7 + 8) \log_5 x \] 4. **Calculating the Sum**: The sum of the integers from 2 to 8 is: \[ 2 + 3 + 4 + 5 + 6 + 7 + 8 = 35 \] Therefore, we have: \[ 35 \log_5 x \] 5. **Setting Up the Equation**: We set this equal to 35: \[ 35 \log_5 x = 35 \] 6. **Dividing Both Sides**: Dividing both sides by 35 gives: \[ \log_5 x = 1 \] 7. **Finding x**: To find \( x \), we rewrite the logarithmic equation in exponential form: \[ x = 5^1 = 5 \] ### Final Answer: Thus, the value of \( x \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If log_(sqrt(5))(x)+log_(root(3)(5))(x)log_(root(4)(5))(x)+... up to 7 terms =35, then the value of x is

If the sum of the first 20 terms of the series log_((7^(1//2)))x + log_((7^(1//3))) x + log_((7^(1//4)))x + .... is 460 , then x is equal to :

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If log_(3)2,log_(3)(2^(x)-5),log_(3)(2^(x)-7/2) are in arithmetic progression, then the value of x is equal to

If log_(5)2,log_(5)(2^(x)-3) and log_(5)((17)/(2)+2^(x-1)) are in AP, then the value of x is

If log_(5)[log_(3)(log_(2)x)]=1 then x is

If "log"_(x) (4x^("log"_(5)x) + 5) = 2 "log"_(5)x , then x equals to

If log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7 , then = ______ .