Home
Class 12
MATHS
If a(1), a(2), …, a(n) be an A.P. of pos...

If `a_(1), a_(2), …, a_(n)` be an A.P. of positive terms, then `(a_(1) + a_(2n))/(sqrt(a_(1)) + sqrt(a_(2))) + (a_(2) + a_(2n - 1))/(sqrt(a_(2)) + sqrt(a_(3))) + ...+ (a_(n) + a_(n + 1))/(sqrt(a_(n)) + sqrt(a_(n + 1)))` is equal to

A

`(n (a_(1) + a_(2n)))/(sqrt(a_(1)) + sqrt(a_(n + 1)))`

B

n - 1

C

`(n - 1)/(sqrt(a_(1)) + sqrt(a_(n + 1)))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ S = \frac{a_1 + a_{2n}}{\sqrt{a_1} + \sqrt{a_2}} + \frac{a_2 + a_{2n-1}}{\sqrt{a_2} + \sqrt{a_3}} + \ldots + \frac{a_n + a_{n+1}}{\sqrt{a_n} + \sqrt{a_{n+1}}} \] where \( a_1, a_2, \ldots, a_n \) are terms of an arithmetic progression (A.P.) with positive terms. ### Step 1: Identify the terms of the A.P. Let the first term of the A.P. be \( a \) and the common difference be \( d \). Then we can express the terms as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - ... - \( a_n = a + (n-1)d \) - \( a_{2n} = a + (2n-1)d \) - \( a_{n+1} = a + nd \) ### Step 2: Substitute the terms into the expression We can rewrite the terms in the expression \( S \) using the definitions from Step 1: \[ S = \frac{a + (2n-1)d}{\sqrt{a} + \sqrt{a + d}} + \frac{(a + d) + (2n-2)d}{\sqrt{a + d} + \sqrt{a + 2d}} + \ldots + \frac{(a + (n-1)d) + (a + nd)}{\sqrt{a + (n-1)d} + \sqrt{a + nd}} \] ### Step 3: Simplify each term Notice that each term can be simplified using the identity: \[ \frac{x + y}{\sqrt{x} + \sqrt{y}} = \frac{(\sqrt{x} + \sqrt{y})^2}{\sqrt{x} + \sqrt{y}} = \sqrt{x} + \sqrt{y} \] Thus, we can rewrite each term: \[ \frac{a_k + a_{k+1}}{\sqrt{a_k} + \sqrt{a_{k+1}}} = \sqrt{a_k} + \sqrt{a_{k+1}} \] ### Step 4: Sum the simplified terms Now, we can sum the simplified terms: \[ S = \sum_{k=1}^{n} (\sqrt{a_k} + \sqrt{a_{k+1}}) \] This can be rearranged as: \[ S = \sqrt{a_1} + \sqrt{a_2} + \sqrt{a_2} + \sqrt{a_3} + \ldots + \sqrt{a_n} + \sqrt{a_{n+1}} \] ### Step 5: Combine like terms Notice that \( \sqrt{a_2}, \sqrt{a_3}, \ldots, \sqrt{a_n} \) appear twice. Thus, we can express \( S \) as: \[ S = \sqrt{a_1} + 2(\sqrt{a_2} + \sqrt{a_3} + \ldots + \sqrt{a_n}) + \sqrt{a_{n+1}} \] ### Step 6: Conclusion The final result can be expressed in terms of the first and last terms of the A.P. and the sum of the square roots of the intermediate terms. Thus, the value of the expression is: \[ S = \frac{a_1 + a_{2n}}{d} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If a_(r)>0,r in N and a_(1)*a_(2),....a_(2n) are in A.P then (a_(1)+a_(2))/(sqrt(a)_(1)+sqrt(a)_(2))+(a_(2)+a_(2n-1))/(sqrt(a)_(2)+sqrt(a)_(3))+...+(a_(n)+a_(n+1))/(sqrt(a)_(n)+sqrt(a)_(n+1))=

If a_(1),a_(2),...a_(n) are in AP,then (sqrt(a)_(1)+sqrt(a)_(n))/(sqrt(a)_(1)+sqrt(a)_(2))+(sqrt(a)_(1)+sqrt(a)_(n))/(sqrt(a)_(2)+sqrt(a)_(3))+...+(sqrt(a)_(1)+sqrt(a)_(n))/(sqrt(a)_(n-1)+sqrt(a)_(n))=

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))

If a_(1),a_(2),a_(3),......,a_(n) are in A.P. Where a_(k)>0AA K and sum_(K=2)^(n)(1)/(sqrt(a_(K-1))+sqrt(a_(K)))=(L)/(sqrt(a_(1))+sqrt(a_(n))) then L=

If a_(1),a_(2),a_(3),a_(n) are in A.P,where a_(i)>0 for all i, show that (1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))++(1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(n-1)/(sqrt(a_(1))+sqrt(a_(n)))