Home
Class 12
MATHS
In an arithmetical progression a(1), a(2...

In an arithmetical progression `a_(1), a_(2), a_(3),…, S = a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) + …. - a_(2k)^(2) =`

A

`(k)/(2 k - 1) (a_(1)^(2) - a_(2k)^(2))`

B

`(2k)/(k - 1) (a_(2k)^(2) - a_(1)^(2))`

C

`(k)/(k + 1) (a_(1)^(2) + a_(2k)^(2))`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( S = a_1^2 - a_2^2 + a_3^2 - a_4^2 + \ldots - a_{2k}^2 \) for an arithmetic progression (AP). ### Step-by-Step Solution: 1. **Identify the terms of the AP**: In an arithmetic progression, the \( n \)-th term can be expressed as: \[ a_n = a_1 + (n-1)d \] where \( a_1 \) is the first term and \( d \) is the common difference. 2. **Express the squares of the terms**: We can express the squares of the terms in the sum: \[ a_1^2, a_2^2, a_3^2, \ldots, a_{2k}^2 \] Specifically: \[ a_2 = a_1 + d, \quad a_3 = a_1 + 2d, \quad a_4 = a_1 + 3d, \ldots, a_{2k} = a_1 + (2k-1)d \] 3. **Substitute the terms into the sum**: The sum \( S \) can be rewritten as: \[ S = a_1^2 - (a_1 + d)^2 + (a_1 + 2d)^2 - (a_1 + 3d)^2 + \ldots - (a_1 + (2k-1)d)^2 \] 4. **Expand the squares**: Expanding each term gives: \[ S = a_1^2 - (a_1^2 + 2a_1d + d^2) + (a_1^2 + 4a_1d + 4d^2) - (a_1^2 + 6a_1d + 9d^2) + \ldots \] 5. **Group the terms**: Notice that the \( a_1^2 \) terms will cancel out in pairs. We can group the terms based on their coefficients: \[ S = (a_1^2 - a_1^2) + (4a_1d - 2a_1d) + (0 - 6a_1d) + \ldots - (2k-1)^2d^2 \] 6. **Factor out common terms**: Factor out \( -d \) from the entire expression: \[ S = -d \left( \text{sum of coefficients} \right) \] 7. **Calculate the sum of coefficients**: The coefficients can be calculated as: \[ S = -d \cdot \left( \text{sum of first } 2k \text{ terms with alternating signs} \right) \] 8. **Final expression**: After calculating the sum, we find: \[ S = -kd(a_1 + a_{2k}) \] where \( a_{2k} = a_1 + (2k-1)d \). ### Conclusion: Thus, the final expression for \( S \) is: \[ S = -kd(a_1 + a_1 + (2k-1)d) = -kd(2a_1 + (2k-1)d) \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),..., are in arithmetic progression,then S=a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+...-a_(2k)^(2) is equal

If , in a G.P. {a_(n)} it is given that a_(1)+a_(2)+a_(3)+a_(4) = 30 and a_(1)^(2)+a_(2)^(2)+a_(3)^(2)+a_(4)^(2) =340, then : (a_(1),r) -=

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) +a_(2))^(2) = (a_(1)-a_(4))^(2)

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then