Home
Class 12
MATHS
If S = (2)/(3) + (8)/(9) + (26)/(27) + (...

If `S = (2)/(3) + (8)/(9) + (26)/(27) + (30)/(81)+….+n` terms, then the value of S is equal to

A

`n (1 - (1)/(3^(n)))`

B

`1 - (1)/(3^(n))`

C

`2 - (1)/(2) ((2)/(3))^(n)`

D

`n - (1)/(2) (1 - (1)/(3^(n)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( S = \frac{2}{3} + \frac{8}{9} + \frac{26}{27} + \frac{30}{81} + \ldots \) for \( n \) terms, we can analyze the pattern of the terms. ### Step 1: Identify the pattern in the terms The terms can be rewritten as: - First term: \( \frac{2}{3} = 1 - \frac{1}{3} \) - Second term: \( \frac{8}{9} = 1 - \frac{1}{9} \) - Third term: \( \frac{26}{27} = 1 - \frac{1}{27} \) - Fourth term: \( \frac{30}{81} = 1 - \frac{1}{81} \) From this, we can see that the \( n \)-th term can be expressed as: \[ \text{n-th term} = 1 - \frac{1}{3^n} \] ### Step 2: Write the sum \( S \) The sum \( S \) can be expressed as: \[ S = \sum_{n=1}^{N} \left( 1 - \frac{1}{3^n} \right) \] This can be split into two separate sums: \[ S = \sum_{n=1}^{N} 1 - \sum_{n=1}^{N} \frac{1}{3^n} \] ### Step 3: Calculate the first sum The first sum, \( \sum_{n=1}^{N} 1 \), simply counts the number of terms: \[ \sum_{n=1}^{N} 1 = N \] ### Step 4: Calculate the second sum The second sum \( \sum_{n=1}^{N} \frac{1}{3^n} \) is a geometric series with first term \( a = \frac{1}{3} \) and common ratio \( r = \frac{1}{3} \). The formula for the sum of the first \( N \) terms of a geometric series is: \[ S_n = a \frac{1 - r^N}{1 - r} \] Substituting the values: \[ \sum_{n=1}^{N} \frac{1}{3^n} = \frac{\frac{1}{3} \left( 1 - \left( \frac{1}{3} \right)^N \right)}{1 - \frac{1}{3}} = \frac{\frac{1}{3} \left( 1 - \frac{1}{3^N} \right)}{\frac{2}{3}} = \frac{1}{2} \left( 1 - \frac{1}{3^N} \right) \] ### Step 5: Combine the results Now we can substitute back into the expression for \( S \): \[ S = N - \frac{1}{2} \left( 1 - \frac{1}{3^N} \right) \] This simplifies to: \[ S = N - \frac{1}{2} + \frac{1}{6^N} \] ### Final Expression Thus, the value of \( S \) is: \[ S = N - \frac{1}{2} \left( 1 - \frac{1}{3^N} \right) \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

The HCF of (2)/(3),(8)/(9),(10)/(27),(32)/(81) is:

The HCF of (2)/(3),(8)/(9),(10)/(27),(32)/(81) is :

If (9^(n)xx3^(5)xx(27)^3)/(3xx(81)^4)=27 , then the value of n is

If log_2 (log_9 x +3/2+ 8^x) = 3x, then value of 27x is equal to

The HCF of (2)/(3),(8)/(9),(64)/(81) and (10)/(27) is...

If 1+(1+2)/(2)+(1+2+3)/(3)+.... to n terms is S.Then,s is equal to

If S_(n), denotes the sum of n terms of an AP, then the value of (S_(2n)-S_(n)) is equal to

If S denote the sum to infinity and S_(n), the sum of n terms of the series 1+(1)/(3)+(1)/(9)+(1)/(27)+.... such that S-S_(n)<(1)/(300), then the least value of n is

ML KHANNA-PROGRESSIONS -PROBLEM SET - 2 (MULTIPLE CHOICE QUESTIONS)
  1. If A and G be the A .M and G.M between two positive numbers, then the ...

    Text Solution

    |

  2. If the A.M. and G.M. between two numbers are in the ratio m.n., then w...

    Text Solution

    |

  3. If S = (2)/(3) + (8)/(9) + (26)/(27) + (30)/(81)+….+n terms, then the ...

    Text Solution

    |

  4. Sum of n terms of the series (1)/(3) + (5)/(9) + (19)/(27) + (65)/(81)...

    Text Solution

    |

  5. 8 + 88 + 888 +…n terms =

    Text Solution

    |

  6. underset("n digits")((666…6)^(2)) + underset("n digits")((888…8)) is e...

    Text Solution

    |

  7. The value of sum sum(n=1)^(13) ( i^(n) + i^(n+1)) where i= sqrt( -1) ,...

    Text Solution

    |

  8. If |a| lt 1 and |b| lt 1 , then the sum of the series a(a+b) + a^2...

    Text Solution

    |

  9. If S be the sum, P the product and R the sum of the reciprocals of n t...

    Text Solution

    |

  10. If x = 1 + a + a^(2) + a^(3) +…"to" oo (|a| lt 1) and y = 1 b + b^(2) ...

    Text Solution

    |

  11. If x is the first term of a G.P. with infinite number of terms and S(o...

    Text Solution

    |

  12. If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)...

    Text Solution

    |

  13. Given that 0 lt x lt (pi)/(4) and (pi)/(4) lt y lt (pi)/(2) and sum(k ...

    Text Solution

    |

  14. If x = 1 + y + y^(2) + y^(3)+…"to"oo, then y is

    Text Solution

    |

  15. (3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....

    Text Solution

    |

  16. If {:(x = a + a//r + a//r^(2)+......oo),(y = b - b//r + b//r^(2)-........

    Text Solution

    |

  17. If S(1), S(2),…S(lambda) are the sums of infinite G.P.'s whose first t...

    Text Solution

    |

  18. The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo is :

    Text Solution

    |

  19. Find the value of (320(32)^(1//6)(32)^(1//36)oodot

    Text Solution

    |

  20. The value of 2.bar(357), is

    Text Solution

    |