Home
Class 12
MATHS
Given that 0 lt x lt (pi)/(4) and (pi)/(...

Given that `0 lt x lt (pi)/(4) and (pi)/(4) lt y lt (pi)/(2) and sum_(k = 0)^(oo) (-1)^(k) tan^(2k) x = p, sum_(k = 0)^(oo) (-1)^(k) cot^(2k) y = q`, then `sum_(k = 0)^(oo) tan^(2k) x cot^(2k) y` is

A

`(1)/(p) + (1)/(q) - (1)/(pq)`

B

`(1)/({(1)/(p) + (1)/(q) - (1)/(pq)})`

C

p + q - pq

D

p + q + pq

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series \( S = \sum_{k=0}^{\infty} \tan^{2k} x \cot^{2k} y \). ### Step 1: Express the series in terms of \( \tan^2 x \) and \( \cot^2 y \) We can rewrite the series as: \[ S = \sum_{k=0}^{\infty} (\tan^2 x \cot^2 y)^k \] ### Step 2: Identify the common ratio The common ratio of the series is \( r = \tan^2 x \cot^2 y \). ### Step 3: Check the convergence condition Since \( 0 < x < \frac{\pi}{4} \) implies \( \tan^2 x < 1 \) and \( \frac{\pi}{4} < y < \frac{\pi}{2} \) implies \( \cot^2 y < 1 \), we have: \[ \tan^2 x \cot^2 y < 1 \] Thus, the series converges. ### Step 4: Use the formula for the sum of an infinite geometric series The sum of an infinite geometric series is given by: \[ S = \frac{1}{1 - r} \] where \( r \) is the common ratio. Therefore, we have: \[ S = \frac{1}{1 - \tan^2 x \cot^2 y} \] ### Step 5: Substitute \( \tan^2 x \) and \( \cot^2 y \) From the given information, we know: \[ p = \sum_{k=0}^{\infty} (-1)^k \tan^{2k} x = \frac{1}{1 + \tan^2 x} \] and \[ q = \sum_{k=0}^{\infty} (-1)^k \cot^{2k} y = \frac{1}{1 + \cot^2 y} \] ### Step 6: Express \( \tan^2 x \) and \( \cot^2 y \) in terms of \( p \) and \( q \) From the expressions for \( p \) and \( q \): \[ \tan^2 x = \frac{1}{p} - 1 \] \[ \cot^2 y = \frac{1}{q} - 1 \] ### Step 7: Substitute back into the expression for \( S \) Now substituting these into the expression for \( S \): \[ S = \frac{1}{1 - \left(\frac{1}{p} - 1\right)\left(\frac{1}{q} - 1\right)} \] ### Step 8: Simplify the expression Calculating the product: \[ \left(\frac{1}{p} - 1\right)\left(\frac{1}{q} - 1\right) = \frac{1}{pq} - \left(\frac{1}{p} + \frac{1}{q}\right) + 1 \] Thus, \[ S = \frac{1}{1 - \left(\frac{1}{pq} - \left(\frac{1}{p} + \frac{1}{q}\right) + 1\right)} \] This simplifies to: \[ S = \frac{pq}{p + q - 1} \] ### Final Result Thus, the final result is: \[ \sum_{k=0}^{\infty} \tan^{2k} x \cot^{2k} y = \frac{pq}{p + q - 1} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

Y = sum_ (k = 0) ^ (5) x ^ (k) a ^ (k-1)

If (1+x+x^(2)+x^(3))^(5)=sum_(k=0)^(15)a_(k)x^(k), then sum_(k=0)^(7)a_(2k)

sum_ (i = 0)^(oo) sum_ (j = 0)^(oo) sum_ (k = 0)^(oo) (1)/(3^(i) 3^(i) 3^(k) )

The value of sum_(k=0)^(oo)(cos(k pi)6^(k))/(k!) is

sum_ (n = 0) ^ (oo) (1) / (n!) [sum_ (k = 0) ^ (n) (i + 1) int_ (0) ^ (1) 2 ^ (- (k + 1 ) x) dx]

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

Find the value of sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo)(1)/(3^(i)3^(j)3^(k)) .

Find sum_(k=1)^(n)(tan^(-1)(2k))/(2+k^(2)+k^(4))

sum_ (k = 1) ^ (10) ((sin (2k pi)) / (11) + i (cos (2k pi)) / (11))

ML KHANNA-PROGRESSIONS -PROBLEM SET - 2 (MULTIPLE CHOICE QUESTIONS)
  1. If x is the first term of a G.P. with infinite number of terms and S(o...

    Text Solution

    |

  2. If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)...

    Text Solution

    |

  3. Given that 0 lt x lt (pi)/(4) and (pi)/(4) lt y lt (pi)/(2) and sum(k ...

    Text Solution

    |

  4. If x = 1 + y + y^(2) + y^(3)+…"to"oo, then y is

    Text Solution

    |

  5. (3)/(4)-(5)/(4^(2))+(3)/(4^(3))-(5)/(4^(4))+(3)/(4^(5))-(5)/(4^(6))+.....

    Text Solution

    |

  6. If {:(x = a + a//r + a//r^(2)+......oo),(y = b - b//r + b//r^(2)-........

    Text Solution

    |

  7. If S(1), S(2),…S(lambda) are the sums of infinite G.P.'s whose first t...

    Text Solution

    |

  8. The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo is :

    Text Solution

    |

  9. Find the value of (320(32)^(1//6)(32)^(1//36)oodot

    Text Solution

    |

  10. The value of 2.bar(357), is

    Text Solution

    |

  11. The value of 0.4bar(23) is

    Text Solution

    |

  12. An equilateral triangle is drawn by joining the mid-points of a given ...

    Text Solution

    |

  13. If the expression exp {1+|cosx|+cos^(3)x|+cos^(4)x+ . . . . oo)log(e...

    Text Solution

    |

  14. Find the values of x in (-pi,pi) which satisfy the equation 8^(1+|cosx...

    Text Solution

    |

  15. In an A.P., (S(p))/(S(q)) = (p^(2))/(q^(2)), p ne q, then (T(6))/(T(21...

    Text Solution

    |

  16. If ||a| lt 1 "and " |b| lt 1 then the sum of the series 1+(1+a)b+(1+a+...

    Text Solution

    |

  17. If exp. {(sin^2x+sin^4x+sin^6x+…inf.) In2} satisfies the equation x^2-...

    Text Solution

    |

  18. The value of 0. 2^(logsqrt(5)1/4+1/8+1/(16)+) is 4 b. log4 c. log2 d....

    Text Solution

    |

  19. The value of (0*16)^(log(2*5)((1)/(3)+(1)/(3^(2))+(1)/(3^(3))+....oo))...

    Text Solution

    |

  20. If the sum of an infinitely decreasing G.P. is 3, and the sum of the s...

    Text Solution

    |