Home
Class 12
MATHS
If S(lambda) = sum(r = 0)^(oo) (1)/(lamb...

If `S_(lambda) = sum_(r = 0)^(oo) (1)/(lambda^(r)),"then" sum_(lambda = 1)^(n) (lambda - 1)S_(lambda) =`

A

`(n(n-1))/(2)`

B

`(n(n + 1))/(2)`

C

`(n (n + 2))/(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{\lambda = 1}^{n} (\lambda - 1) S_{\lambda} \] where \[ S_{\lambda} = \sum_{r = 0}^{\infty} \frac{1}{\lambda^r} \] ### Step 1: Evaluate \( S_{\lambda} \) The series \( S_{\lambda} \) is a geometric series. The first term \( a \) is 1 (when \( r = 0 \)) and the common ratio \( r \) is \( \frac{1}{\lambda} \). The formula for the sum of an infinite geometric series is: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S_{\lambda} = \frac{1}{1 - \frac{1}{\lambda}} = \frac{1}{\frac{\lambda - 1}{\lambda}} = \frac{\lambda}{\lambda - 1} \] ### Step 2: Substitute \( S_{\lambda} \) into the main expression Now, substituting \( S_{\lambda} \) back into the summation: \[ \sum_{\lambda = 1}^{n} (\lambda - 1) S_{\lambda} = \sum_{\lambda = 1}^{n} (\lambda - 1) \left( \frac{\lambda}{\lambda - 1} \right) \] This simplifies to: \[ \sum_{\lambda = 1}^{n} \lambda \] ### Step 3: Evaluate the summation \( \sum_{\lambda = 1}^{n} \lambda \) The sum of the first \( n \) natural numbers is given by the formula: \[ \sum_{\lambda = 1}^{n} \lambda = \frac{n(n + 1)}{2} \] ### Final Result Thus, the final result for the expression is: \[ \sum_{\lambda = 1}^{n} (\lambda - 1) S_{\lambda} = \frac{n(n + 1)}{2} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

Portion of asymptote of hyperbola x^2/a^2-y^2/b^2 = 1 (between centre and the tangent at vertex) in the first quadrant is cut by the line y + lambda(x-a)=0 (lambda is a parameter) then (A) lambda in R (B) lambda in (0,oo) (C) lambda in (-oo,0) (D) lambda in R-{0}

The sum of distinct value of lambda for which the system of equations (lambda -1 )x + (3lambda + 1) y + 2 lambda x= 0 (lambda -1) x + (4lambda - 2) y + (lambda + 3) x= 0 2x + (2lambda + 1) y + 3(lambda - 1) z=0 has non - zeor solutions is ______.

If tan 82(1)/(2^(@))=sqrt(lambda_(1))+sqrt(lambda_(2))+sqrt(lambda_(3))+2 then lambda_(1)+lambda_(2)+lambda_(3) is equal to

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda.

If the matrix A = [[lambda_(1)^(2), lambda_(1)lambda_(2), lambda_(1) lambda_(3)],[lambda_(2)lambda_(1),lambda_(2)^(2),lambda_(2)lambda_(3)],[lambda_(3)lambda_(1),lambda_(3)lambda_(2),lambda_(3)^(2)]] is idempotent, the value of lambda_(1)^(2) + lambda_(2)^(2) + lambda _(3)^(2) is

If p lambda^(4) + q lambda^(3) + r lambda^(2) + s lambda + t = |{:(b^(2)+c^(2), a^(2) + lambda , a^(2) + lambda),(b^(2)+lambda,c^(2)+a^(2),b^(2)+lambda),(c^(2)+lambda,c^(2)+lambda,a^(2)+b^(2)):}| is an identity in lambda wherep, q, r,s , t are constants, then the value of t is

ML KHANNA-PROGRESSIONS -PROBLEM SET - 2 (MULTIPLE CHOICE QUESTIONS)
  1. The sum of an infinite geometric progression (G.P.) is 2 and the sum o...

    Text Solution

    |

  2. Consider an infinite geometric series with first term a and common rat...

    Text Solution

    |

  3. If S(lambda) = sum(r = 0)^(oo) (1)/(lambda^(r)),"then" sum(lambda = 1)...

    Text Solution

    |

  4. If a,b,c are in A.P., then 2^(ax+1),2^(bx+1),2^(cx+1), x in R, are in

    Text Solution

    |

  5. If a,b,c are in A.P. as well as in G.P. then

    Text Solution

    |

  6. If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

    Text Solution

    |

  7. If x, y ,z are in G.P. and a^x = b^y = c^z , then :

    Text Solution

    |

  8. log(3) 2, log(6) 2, log(12)2 are in

    Text Solution

    |

  9. If a, b, c are in G.P., then log(a) 10, log(b) 10, log(c) 10 are in

    Text Solution

    |

  10. If (a + be^(x))/(a-be^(x)) = (b + ce^(x))/(b-ce^(x)) = (c+de^(x))/(c -...

    Text Solution

    |

  11. If a,b,c are in A.P., a,x,b are in G.P. and b,y,c are in G.P. then a^(...

    Text Solution

    |

  12. If x, y, z are in G.P. and tan^(-1) x, tan^(-1)y and tan^(-1)z are in ...

    Text Solution

    |

  13. If a, b, c are in A.P. and b-a, c-b, a are in G.P. then a:b:c=?

    Text Solution

    |

  14. The sides a, b, c of a triangle ABC are in G.P. such that log a - log ...

    Text Solution

    |

  15. If a, b, c are in G.P. where a, b, c are all (+) ive and "log" (5c)/(a...

    Text Solution

    |

  16. If A and G between two + ive numbers a and b are connected by the rela...

    Text Solution

    |

  17. The product of n geometric means between two given numbers a and b is ...

    Text Solution

    |

  18. Find the value of n so that (a^(n+1)+b^(n+1))/(a^n+b^n)may be the geo...

    Text Solution

    |

  19. (2n+1) G.M.s are inserted between 4 and 2916 .Then the (n+1)^(th) G.M....

    Text Solution

    |

  20. Area of the triangle with vertces (a,b),(x(1),y(1)) and (x(2),y(2)) wh...

    Text Solution

    |