Home
Class 12
MATHS
Let A(n) = (3)/(4) - ((3)/(4))^(2) + ((3...

Let `A_(n) = (3)/(4) - ((3)/(4))^(2) + ((3)/(4))^(3)-...+ (-1)^(n-1) ((3)/(4))^(n) and B_(n) = 1 - A_(n)`, then find the least value of `n_(0), n_(0) in N` such that `B_(n) gt A_(n), AA n ge n_(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sequences \( A_n \) and \( B_n \) given by: \[ A_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 - \ldots + (-1)^{n-1} \left(\frac{3}{4}\right)^n \] \[ B_n = 1 - A_n \] We want to find the least value of \( n_0 \) such that \( B_n > A_n \) for all \( n \geq n_0 \). ### Step 1: Find the sum \( A_n \) The series \( A_n \) is a finite geometric series with the first term \( a = \frac{3}{4} \) and common ratio \( r = -\frac{3}{4} \). The formula for the sum of the first \( n \) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] Substituting the values: \[ A_n = \frac{3}{4} \cdot \frac{1 - \left(-\frac{3}{4}\right)^n}{1 - \left(-\frac{3}{4}\right)} \] Calculating the denominator: \[ 1 - \left(-\frac{3}{4}\right) = 1 + \frac{3}{4} = \frac{7}{4} \] Thus, we have: \[ A_n = \frac{3}{4} \cdot \frac{1 - \left(-\frac{3}{4}\right)^n}{\frac{7}{4}} = \frac{3}{7} \left(1 - \left(-\frac{3}{4}\right)^n\right) \] ### Step 2: Find \( B_n \) Now, substituting \( A_n \) into \( B_n \): \[ B_n = 1 - A_n = 1 - \frac{3}{7} \left(1 - \left(-\frac{3}{4}\right)^n\right) \] Simplifying \( B_n \): \[ B_n = 1 - \frac{3}{7} + \frac{3}{7} \left(-\frac{3}{4}\right)^n = \frac{4}{7} + \frac{3}{7} \left(-\frac{3}{4}\right)^n \] ### Step 3: Set up the inequality \( B_n > A_n \) We need to solve the inequality: \[ \frac{4}{7} + \frac{3}{7} \left(-\frac{3}{4}\right)^n > \frac{3}{7} \left(1 - \left(-\frac{3}{4}\right)^n\right) \] This simplifies to: \[ \frac{4}{7} + \frac{3}{7} \left(-\frac{3}{4}\right)^n > \frac{3}{7} - \frac{3}{7} \left(-\frac{3}{4}\right)^n \] Combining like terms gives: \[ \frac{4}{7} + \frac{3}{7} \left(-\frac{3}{4}\right)^n + \frac{3}{7} \left(-\frac{3}{4}\right)^n > \frac{3}{7} \] This leads to: \[ \frac{4}{7} + \frac{6}{7} \left(-\frac{3}{4}\right)^n > \frac{3}{7} \] Subtracting \( \frac{3}{7} \) from both sides: \[ \frac{1}{7} + \frac{6}{7} \left(-\frac{3}{4}\right)^n > 0 \] ### Step 4: Solve for \( n \) Now we can isolate \( \left(-\frac{3}{4}\right)^n \): \[ \frac{6}{7} \left(-\frac{3}{4}\right)^n > -\frac{1}{7} \] Multiplying both sides by \( \frac{7}{6} \): \[ \left(-\frac{3}{4}\right)^n > -\frac{1}{6} \] Since \( \left(-\frac{3}{4}\right)^n \) alternates in sign, we need to consider when \( n \) is even or odd. We find that for large \( n \), \( \left(-\frac{3}{4}\right)^n \) approaches 0. ### Step 5: Find the least \( n_0 \) To find the least \( n_0 \), we can test small values of \( n \): - For \( n = 1 \): \( B_1 = \frac{4}{7} + \frac{3}{7}(-\frac{3}{4})^1 = \frac{4}{7} - \frac{9}{28} = \frac{4}{7} - \frac{9}{28} = \frac{7}{28} = \frac{1}{4} < A_1 \) - For \( n = 2 \): \( B_2 = \frac{4}{7} + \frac{3}{7}(-\frac{3}{4})^2 = \frac{4}{7} + \frac{27}{112} > A_2 \) - Continuing this way, we find that \( n_0 = 7 \) is the least value satisfying the condition. Thus, the least value of \( n_0 \) such that \( B_n > A_n \) for all \( n \geq n_0 \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (TRUE AND FALSE) |2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If quad a_(n)=(3)/(4)-((3)/(4))^(2)+((3)/(4))^(3)+...(-1)^(n-1)((3)/(4)) and b_(n)=1-a_(n), then find the minimum natural number n,such that b_(n)>a_(n)

Let A_n=(3/4)-(3/4)^2+(3/4)^3+….+(-1)^(n-1)(3/4)^n and B_n = 1-A_n . find the least odd natural numbers n_0 , so that B_ngtA_n A for all ngen_0

If a_(1)=1 and a_(n+1)=(4+3a_(0))/(3+2a_(n)),n>=1, and if lim_(n rarr oo)a_(n)=a then find the value of a.

Let a_(n)=[log((7)/(5))]^(n) and b_(n) =log_(5) (a_(n)) AA n in N . Then b_(1),b_(2),b_(3),… are in

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

Let a_(0)/(n+1) +a_(1)/n + a_(2)/(n-1) + ….. +(a_(n)-1)/2 +a_(n)=0 . Show that there exists at least one real x between 0 and 1 such that a_(0)x^(n) + a_(1)x^(n-1) + …..+ a_(n)=0

" Let "a_(n)=(10^(n))/(n!)" for "n=1,2,3,..." Then the greatest value of "n" for which "a_(n)" is the greatest is."

ML KHANNA-PROGRESSIONS -PROBLEM SET - 2 (MULTIPLE CHOICE QUESTIONS)
  1. If a,b,c are in G.P., then show that : a(b^2+c^2)=c(a^2+b^2)

    Text Solution

    |

  2. If x, y ,z are in G.P. and a^x = b^y = c^z , then :

    Text Solution

    |

  3. log(3) 2, log(6) 2, log(12)2 are in

    Text Solution

    |

  4. If a, b, c are in G.P., then log(a) 10, log(b) 10, log(c) 10 are in

    Text Solution

    |

  5. If (a + be^(x))/(a-be^(x)) = (b + ce^(x))/(b-ce^(x)) = (c+de^(x))/(c -...

    Text Solution

    |

  6. If a,b,c are in A.P., a,x,b are in G.P. and b,y,c are in G.P. then a^(...

    Text Solution

    |

  7. If x, y, z are in G.P. and tan^(-1) x, tan^(-1)y and tan^(-1)z are in ...

    Text Solution

    |

  8. If a, b, c are in A.P. and b-a, c-b, a are in G.P. then a:b:c=?

    Text Solution

    |

  9. The sides a, b, c of a triangle ABC are in G.P. such that log a - log ...

    Text Solution

    |

  10. If a, b, c are in G.P. where a, b, c are all (+) ive and "log" (5c)/(a...

    Text Solution

    |

  11. If A and G between two + ive numbers a and b are connected by the rela...

    Text Solution

    |

  12. The product of n geometric means between two given numbers a and b is ...

    Text Solution

    |

  13. Find the value of n so that (a^(n+1)+b^(n+1))/(a^n+b^n)may be the geo...

    Text Solution

    |

  14. (2n+1) G.M.s are inserted between 4 and 2916 .Then the (n+1)^(th) G.M....

    Text Solution

    |

  15. Area of the triangle with vertces (a,b),(x(1),y(1)) and (x(2),y(2)) wh...

    Text Solution

    |

  16. If log(t)a, a^(t//2) and log(b)t are in G.P., then t is equal to

    Text Solution

    |

  17. Sum of the series (sqrt(3) - 1) + 2 (2 - sqrt(3)) + 2 (3 sqrt(3) - 5)+...

    Text Solution

    |

  18. Let n > 1, be a positive integer. Then the largest integer m, such tha...

    Text Solution

    |

  19. Leta(1),a(2),"...." be in AP and q(1),q(2),"...." be in GP. If a(1)=q(...

    Text Solution

    |

  20. Let A(n) = (3)/(4) - ((3)/(4))^(2) + ((3)/(4))^(3)-...+ (-1)^(n-1) ((3...

    Text Solution

    |