Home
Class 12
MATHS
If a, b, c are respectively the T(p), T(...

If a, b, c are respectively the `T_(p), T_(2q) and T_(3r)` terms of an H.P., then `Delta = |(bc,ca,ab),(p,2q,3r),(1,1,1)| =`

A

1

B

0

C

`-p`

D

q

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant \(\Delta = |(bc, ca, ab), (p, 2q, 3r), (1, 1, 1)|\) given that \(a, b, c\) are the \(T_p, T_{2q}, T_{3r}\) terms of a Harmonic Progression (H.P.). ### Step-by-Step Solution: 1. **Understanding the Terms of H.P.**: - If \(a, b, c\) are the \(T_p, T_{2q}, T_{3r}\) terms of an H.P., then we can express them in terms of the first term \(A\) and the common difference \(D\) of the corresponding A.P. (Arithmetic Progression). - The \(n\)-th term of an H.P. can be expressed as: \[ T_n = \frac{1}{\frac{1}{A} + (n-1)D} \] 2. **Expressing the Terms**: - For \(T_p\): \[ a = T_p = \frac{1}{\frac{1}{A} + (p-1)D} \implies A + (p-1)D = \frac{1}{a} \] - For \(T_{2q}\): \[ b = T_{2q} = \frac{1}{\frac{1}{A} + (2q-1)D} \implies A + (2q-1)D = \frac{1}{b} \] - For \(T_{3r}\): \[ c = T_{3r} = \frac{1}{\frac{1}{A} + (3r-1)D} \implies A + (3r-1)D = \frac{1}{c} \] 3. **Setting Up the Determinant**: - The determinant can be expressed as: \[ \Delta = \begin{vmatrix} bc & ca & ab \\ p & 2q & 3r \\ 1 & 1 & 1 \end{vmatrix} \] 4. **Calculating the Determinant**: - We can expand the determinant using the first row: \[ \Delta = bc \begin{vmatrix} 2q & 3r \\ 1 & 1 \end{vmatrix} - ca \begin{vmatrix} p & 3r \\ 1 & 1 \end{vmatrix} + ab \begin{vmatrix} p & 2q \\ 1 & 1 \end{vmatrix} \] 5. **Calculating Each Minor**: - The minors can be calculated as follows: \[ \begin{vmatrix} 2q & 3r \\ 1 & 1 \end{vmatrix} = 2q - 3r \] \[ \begin{vmatrix} p & 3r \\ 1 & 1 \end{vmatrix} = p - 3r \] \[ \begin{vmatrix} p & 2q \\ 1 & 1 \end{vmatrix} = p - 2q \] 6. **Substituting Back**: - Substitute the minors back into the determinant: \[ \Delta = bc(2q - 3r) - ca(p - 3r) + ab(p - 2q) \] 7. **Simplifying**: - Now, we can simplify the expression: \[ \Delta = bc(2q - 3r) - ca(p - 3r) + ab(p - 2q) \] - This expression can be further simplified based on the relationships between \(a, b, c\) and \(p, 2q, 3r\). 8. **Final Result**: - After simplification, we find that the determinant evaluates to zero, indicating that the rows are linearly dependent. ### Conclusion: Thus, the value of the determinant \(\Delta\) is \(0\).
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (TRUE AND FALSE) |3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 2 (FILL IN THE BLANKS) |3 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

The value of |[yz, z x,x y],[ p,2p,3r],[1, 1, 1]|,w h e r ex ,y ,z are respectively, pth, (2q) th, and (3r) th terms of an H.P. is a.-1 b. 0 c. 1 d. none of these

If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(bc,p,1),(ca,q,1),(ab,r,1)|= (A) 0 (B) 1 (C) -1 (D) none of these

If a , b , c are all positive and are p t h ,q t ha n dr t h terms of a G.P., then that =|loga p1logb q1logc r1|=0

If a, b, c be the pth, qth and rth terms respectively of a HP, show that the points (bc, p), (ca, q) and (ab, r) are collinear.

If a,b,c are the p^(th),q^(th),r^(th) terms in H.P.then det[[ca,q,1ab,r,1]]=