Home
Class 12
MATHS
1.2.3 + 2.3.4 + 3.4.5 +…n terms is (n (n...

1.2.3 + 2.3.4 + 3.4.5 +…n terms is `(n (n + 1) (n + 2) (n + 3))/(P)` where P =

A

4

B

6

C

8

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series \(1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + 3 \cdot 4 \cdot 5 + \ldots\) up to \(n\) terms and express it in the form \(\frac{n(n + 1)(n + 2)(n + 3)}{P}\), where \(P\) is to be determined. ### Step 1: Identify the general term The general term of the series can be expressed as: \[ T_n = n(n + 1)(n + 2) \] This represents the \(n\)-th term of the series. ### Step 2: Write the sum of the series The sum of the first \(n\) terms can be written as: \[ S_n = \sum_{k=1}^{n} k(k + 1)(k + 2) \] ### Step 3: Simplify the general term We can rewrite the general term: \[ T_k = k(k + 1)(k + 2) = k^3 + 3k^2 + 2k \] Thus, the sum becomes: \[ S_n = \sum_{k=1}^{n} (k^3 + 3k^2 + 2k) \] ### Step 4: Use summation formulas We can use the formulas for the sums of powers: - \(\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}\) - \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}\) - \(\sum_{k=1}^{n} k^3 = \left(\frac{n(n + 1)}{2}\right)^2\) Using these, we can compute \(S_n\): \[ S_n = \sum_{k=1}^{n} k^3 + 3\sum_{k=1}^{n} k^2 + 2\sum_{k=1}^{n} k \] ### Step 5: Substitute the summation results Substituting the summation results into the equation: \[ S_n = \left(\frac{n(n + 1)}{2}\right)^2 + 3\left(\frac{n(n + 1)(2n + 1)}{6}\right) + 2\left(\frac{n(n + 1)}{2}\right) \] ### Step 6: Simplify the expression After substituting and simplifying, we can find that: \[ S_n = \frac{n(n + 1)(n + 2)(n + 3)}{4} \] ### Step 7: Identify \(P\) From the expression for \(S_n\), we can see that it is in the form: \[ S_n = \frac{n(n + 1)(n + 2)(n + 3)}{P} \] Comparing both sides, we find that \(P = 4\). ### Final Answer Thus, the value of \(P\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

The sum to 100 terms of the series 1.2.3. + 2.3.4. + 3.4.5. + …+ n(n + 1) (n+2) + …. is integral multiple of

If the sum of n term of the series (5)/(1.2.3) + (6)/(2.3.4) + ( 7)/(3.4.5)+"…." is a/2 - (n+b)/((n+1)(n+2)) , then

2.5+3.8+4.11+.....+ upto n terms =n(n^(2)+4n+5), n in N

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Evaluate: lim_ (n rarr oo) (1 ^ (4) + 2 ^ (4) + 3 ^ (4) + ... + n ^ (4)) / (n ^ (5)) - lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) + ... + n ^ (3)) / (n ^ (5))

Let P_ (n) = (2 ^ (3) -1) / (2 ^ (3) +1) * (3 ^ (3) -1) / (3 ^ (3) +1) * (4 ^ ( 3) -1) / (4 ^ (3) +1) ...... (n ^ (3) -1) / (n ^ (3) +1) Prove that lim_ (n rarr oo) P_ ( n) = (2) / (3)

If the sum of n terms of an A.P. is 2n^2+5n , then its n t h term is 4n-3 (b) 3n-4 (c) 4n+3 (d) 3n+4

ML KHANNA-PROGRESSIONS -PROBLEM SET - 4 (MULTIPLE CHOICE QUESTIONS)
  1. Sum up to 16 terms of the series (1^(3))/(1) + (1^(3) + 2^(3))/(1 + 3)...

    Text Solution

    |

  2. Sum of n terms of the series 1 + (1 + 3) + (1 + 3 + 5)+… is

    Text Solution

    |

  3. 1.2.3 + 2.3.4 + 3.4.5 +…n terms is (n (n + 1) (n + 2) (n + 3))/(P) whe...

    Text Solution

    |

  4. Find the sum of all the numbers of the form n^3 which lie between 100 ...

    Text Solution

    |

  5. If the sum of n natural numbers is one-third the sum of their cubes th...

    Text Solution

    |

  6. If the sum of first n natural numbers is one-fifth of the sum of their...

    Text Solution

    |

  7. If sum n = 210, then sum n^(2) =

    Text Solution

    |

  8. If f : R rarr R satisfies f(x + y) = f(x) + f(y) x, y in R and f(1) = ...

    Text Solution

    |

  9. If the sum of n terms of an A.P. is an(n - 1), then sum of squares of ...

    Text Solution

    |

  10. Balls are arranged in rows to form an equilateral triangle. The first ...

    Text Solution

    |

  11. Sum of n terms the series : 1^2-2^2+3^2-4^2+5^2-6^2+

    Text Solution

    |

  12. The sum of the series: 1/((log)2 4)+1/((log)4 4)+1/((log)8 4)++1/((log...

    Text Solution

    |

  13. The sum of the series (1)/(3 xx 7) + (1)/(7 xx 11) + (1)/(11 xx 15)+… ...

    Text Solution

    |

  14. If (1^2-t1)+(2^2-t2)++(n^2-tn)+=(n(n^2-1))/3 , then tn is equal to n^2...

    Text Solution

    |

  15. The sum of n terms of the series 1^2+2.2^2+3^2+2.4^2+5^2+2.6^2+.... is...

    Text Solution

    |

  16. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  17. The sum of all the products of the first n(+) ive integers taken two a...

    Text Solution

    |

  18. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  19. The value of the expression 2 (1 + omega) (1 + omega^(2)) + 3(2 omega ...

    Text Solution

    |

  20. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |