Home
Class 12
MATHS
If f : R rarr R satisfies f(x + y) = f(x...

If `f : R rarr R` satisfies `f(x + y) = f(x) + f(y) x, y in R` and f(1) = 7, then `sum_(r = 1)^(n) f(r) =`

A

`(7n)/(2)`

B

`(7 (n + 1))/(2)`

C

`7n (n + 1)`

D

`(7n (n + 1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the functional equation We are given that \( f(x + y) = f(x) + f(y) \) for all \( x, y \in \mathbb{R} \). This property suggests that \( f \) is a linear function. ### Step 2: Find \( f(2) \) Using the property of the function, we can find \( f(2) \): \[ f(2) = f(1 + 1) = f(1) + f(1) = 2f(1) = 2 \times 7 = 14. \] ### Step 3: Find \( f(3) \) Next, we can find \( f(3) \): \[ f(3) = f(1 + 2) = f(1) + f(2) = 7 + 14 = 21. \] ### Step 4: Generalize \( f(n) \) Continuing this pattern, we can see that: \[ f(1) = 7, \quad f(2) = 14, \quad f(3) = 21. \] We can generalize this to: \[ f(n) = n \cdot 7. \] ### Step 5: Calculate the summation \( \sum_{r=1}^{n} f(r) \) Now we need to calculate: \[ \sum_{r=1}^{n} f(r) = f(1) + f(2) + f(3) + \ldots + f(n). \] Substituting the expression for \( f(r) \): \[ \sum_{r=1}^{n} f(r) = 7 + 14 + 21 + \ldots + 7n. \] Factoring out the 7: \[ = 7(1 + 2 + 3 + \ldots + n). \] ### Step 6: Use the formula for the sum of the first \( n \) natural numbers We know that the sum of the first \( n \) natural numbers is given by: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2}. \] Thus, we have: \[ \sum_{r=1}^{n} f(r) = 7 \cdot \frac{n(n + 1)}{2}. \] ### Final Answer The final result is: \[ \sum_{r=1}^{n} f(r) = \frac{7n(n + 1)}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If f:RtoR satisfies f(x+y)=f(x)+f(y) for all x,y in R and f(1)=7, then sum_(r=1)^(n) f(r) , is

If f:R rarr R satisfies f(x+y)=f(x)+f(y), for all x,y in R and f(1)=2 then sum_(r=1)^(7)f(1)

If f:R to R satisfies f(x+y)=f(x)+f(y), for all x, y in R and f(1)=7, then sum_(r=1)^(n)f( r) is

If f:R rarr R satisfies,f(x+y)=f(x)+f(y),AA x,y in R and f(1)=4,thensum_(r=1)^(n)f(r)

If f:RtoR satisfies f(x+y)=f(x)+f(y), for all real x,y and f(1)=m. then: sum_(r=1)^(n)f(r)=

Let f be a function satisfying f(x+y)=f(x) *f(y) for all x,y, in R. If f (1) =3 then sum_(r=1)^(n) f (r) is equal to

A function f:R rarr R^(+) satisfies f(x+y)=f(x)f(y)AA x in R If f'(0)=2 then f'(x)=

If f:R rarr R is continuous such that f(x+y)=f(x)*f(y)AA x,y in R and f(1)=2 then f(100)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Suppose that a function f : R to R satisfies f(x + y) = f(x) f(y) for all x y in R and f(1) = 3 . If underset(i=l)overset(n)sum f(i) = 363 , then n is equa to _______ .

ML KHANNA-PROGRESSIONS -PROBLEM SET - 4 (MULTIPLE CHOICE QUESTIONS)
  1. If the sum of first n natural numbers is one-fifth of the sum of their...

    Text Solution

    |

  2. If sum n = 210, then sum n^(2) =

    Text Solution

    |

  3. If f : R rarr R satisfies f(x + y) = f(x) + f(y) x, y in R and f(1) = ...

    Text Solution

    |

  4. If the sum of n terms of an A.P. is an(n - 1), then sum of squares of ...

    Text Solution

    |

  5. Balls are arranged in rows to form an equilateral triangle. The first ...

    Text Solution

    |

  6. Sum of n terms the series : 1^2-2^2+3^2-4^2+5^2-6^2+

    Text Solution

    |

  7. The sum of the series: 1/((log)2 4)+1/((log)4 4)+1/((log)8 4)++1/((log...

    Text Solution

    |

  8. The sum of the series (1)/(3 xx 7) + (1)/(7 xx 11) + (1)/(11 xx 15)+… ...

    Text Solution

    |

  9. If (1^2-t1)+(2^2-t2)++(n^2-tn)+=(n(n^2-1))/3 , then tn is equal to n^2...

    Text Solution

    |

  10. The sum of n terms of the series 1^2+2.2^2+3^2+2.4^2+5^2+2.6^2+.... is...

    Text Solution

    |

  11. If the sum of n terms of an A.P is cn (n-1)where c ne 0 then the sum o...

    Text Solution

    |

  12. The sum of all the products of the first n(+) ive integers taken two a...

    Text Solution

    |

  13. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  14. The value of the expression 2 (1 + omega) (1 + omega^(2)) + 3(2 omega ...

    Text Solution

    |

  15. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  16. For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) ...

    Text Solution

    |

  17. The sum of the series (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+…. ad infinity...

    Text Solution

    |

  18. If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value o...

    Text Solution

    |

  19. The sum of the infinite series 1 + (1+a) x + (1 + a + a^(2)) x^(2) + (...

    Text Solution

    |

  20. Sum of the series 1 + 2 + 4 + 7 +…+ 67 is equal to

    Text Solution

    |