Home
Class 12
MATHS
The value of the expression (1+1/omega)...

The value of the expression `(1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2))`, where `omega` is an imaginary cube root of unity, is

A

`(n (n^(2)+ 2))/(3)`

B

`(n (n^(2)- 2))/(3)`

C

`(n(n^(2) + 1))/(3)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

Knowledge Check

  • The value of the expression 1.(2 - omega) (2 - omega^(2)) + 2 (3 - omega) (3 - omega^(2))+…+ (n - 1). (n - omega) (n - omega^(2)) where omega is an imaginary cube root of unity, is

    A
    `(1)/(4) n^(2) (n + 1)^(2)`
    B
    `(1)/(4) n^(2) (n + 1)^(2) - n`
    C
    `(1)/(4) n^(2) (n + 1)^(2) + n`
    D
    none
  • The value of the expression 1.(2 - omega)(2-omega^2)+2.(3-omega)(3-omega^2)+ .........+(n-1)(n-omega)(n-omega^2) , where omega is an imaginary cube root of unity is

    A
    `{(n(n+1))/2}^2`
    B
    `{(n(n+1))/2}^2`
    C
    `{(n(n+1))/2}^2 -n`
    D
    None of the above
  • The value of the expression 1.(2 - omega)(2-omega^2)+2.(3-omega)(3-omega^2)+ .........+(n-1)(n-omega)(n-omega^2) , where omega is an imaginary cube root of unity is

    A
    `{(n(n+1))/2}^2`
    B
    `{(n(n+1))/2}^2`
    C
    `{(n(n+1))/2}^2 -n`
    D
    None of the above
  • Similar Questions

    Explore conceptually related problems

    Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

    The value of the expression 1cdot(2-omega)(2-omega^2)+2cdot(3-omega)(3-omega^2)+....+(n-1)cdot(n-omega)(n-omega^2) ,where omega is an imaginary cube root of unity is

    The value of the expression (1+(1)/(w))(1+(1)/(w^(2)))+(2+(1)/(w))(2+(1)/(w^(2)))+(3+(1)/(w))(3+(1)/(w^(2)))+......+(n+(1)/(w))(n+(1)/(w^(2))) where w is an imaginary cube root of unity

    The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

    The value of the expression 2 (1 + omega) (1 + omega^(2)) + 3(2 omega + 1) (2 omega^(2) + 1) + 4(3 omega + 1) (3 omega^(2) + 1)+…+ (n + 1) (n omega + 1) (n omega^(2) + 1) is