Home
Class 12
MATHS
The value of the expression 2 (1 + omega...

The value of the expression `2 (1 + omega) (1 + omega^(2)) + 3(2 omega + 1) (2 omega^(2) + 1) + 4(3 omega + 1) (3 omega^(2) + 1)+`
…`+ (n + 1) (n omega + 1) (n omega^(2) + 1)` is

A

`[(n(n + 1))/(2)]^(2)`

B

`[(n(n + 1))/(2)]^(2)+n`

C

`[(n(n + 1))/(2)]^(2)-n`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(2 (1 + \omega)(1 + \omega^2) + 3(2\omega + 1)(2\omega^2 + 1) + 4(3\omega + 1)(3\omega^2 + 1) + \ldots + (n + 1)(n\omega + 1)(n\omega^2 + 1)\), we will follow these steps: ### Step 1: Identify the General Term The general term of the expression can be written as: \[ T_n = (n + 1)(n\omega + 1)(n\omega^2 + 1) \] ### Step 2: Expand the General Term Now, we will expand \(T_n\): \[ T_n = (n + 1)((n\omega)(n\omega^2) + n\omega + n\omega^2 + 1) \] Since \(\omega^3 = 1\), we know that \(\omega^2 + \omega + 1 = 0\). Therefore, we can simplify: \[ T_n = (n + 1)(n^2\omega^3 + n\omega + n\omega^2 + 1) = (n + 1)(n^2 + n\omega + n\omega^2 + 1) \] Using the identity \(1 + \omega + \omega^2 = 0\): \[ T_n = (n + 1)(n^2 + 1 - n) = (n + 1)(n^2 - n + 1) \] ### Step 3: Simplify Further Now we can simplify: \[ T_n = (n + 1)(n^2 - n + 1) = (n + 1)(n^2 - n + 1) \] ### Step 4: Summation of the General Term To find the total value of the expression, we need to sum \(T_n\) from \(n = 1\) to \(n\): \[ \text{Total} = \sum_{n=1}^{N} T_n = \sum_{n=1}^{N} (n + 1)(n^2 - n + 1) \] ### Step 5: Break Down the Summation We can break down the summation: \[ \sum_{n=1}^{N} (n + 1)(n^2 - n + 1) = \sum_{n=1}^{N} (n^3 + n^2 - n^2 - n + n + 1) = \sum_{n=1}^{N} (n^3 + 1) \] ### Step 6: Use Known Summation Formulas Using the formula for the sum of cubes: \[ \sum_{n=1}^{N} n^3 = \left(\frac{N(N + 1)}{2}\right)^2 \] And the sum of constants: \[ \sum_{n=1}^{N} 1 = N \] Thus, we have: \[ \text{Total} = \left(\frac{N(N + 1)}{2}\right)^2 + N \] ### Final Result The value of the expression is: \[ \frac{N(N + 1)}{2}^2 + N \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

(2 + omega + omega ^ (2)) ^ (3) + (1 + omega-omega ^ (2)) ^ (3) = (1-3 omega + omega ^ (2)) ^ (4) = 1

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

find the value of (1+omega)(1+omega^(2))(1+omega^(3))(1+omega^(4))

ML KHANNA-PROGRESSIONS -PROBLEM SET - 4 (MULTIPLE CHOICE QUESTIONS)
  1. The sum of all the products of the first n(+) ive integers taken two a...

    Text Solution

    |

  2. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  3. The value of the expression 2 (1 + omega) (1 + omega^(2)) + 3(2 omega ...

    Text Solution

    |

  4. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  5. For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) ...

    Text Solution

    |

  6. The sum of the series (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+…. ad infinity...

    Text Solution

    |

  7. If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value o...

    Text Solution

    |

  8. The sum of the infinite series 1 + (1+a) x + (1 + a + a^(2)) x^(2) + (...

    Text Solution

    |

  9. Sum of the series 1 + 2 + 4 + 7 +…+ 67 is equal to

    Text Solution

    |

  10. 99^(th) term of the series 2 + 7 + 14 + 23 + 34 +…is

    Text Solution

    |

  11. Find the 50th term of the series 2+3+6+11+18+….

    Text Solution

    |

  12. Let P = 3^(1//3). 3^(2//9) . 3^(3//27)…oo, then P^(1//3) is equal to

    Text Solution

    |

  13. 2^(1//4).4^(1//8).8^(1//16).16^(1//32)…. is equal to

    Text Solution

    |

  14. If 3 + (1)/(4) (3 + d) + (1)/(4^(2)) (3 + 2d)+…oo = 8, then the value ...

    Text Solution

    |

  15. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  16. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  17. The sum o f series 1+4/5+7/(5^2)+(10)/(5^3)+oo is 7//16 b. 5//16 c. ...

    Text Solution

    |

  18. The sum to infinity of the series 1 + (2)/(3) + (6)/(3^(2)) + (10)/(3^...

    Text Solution

    |

  19. The sum of 0. 2+0004+0. 00006+0. 0000008+... to oo is (200)/(891) b. ...

    Text Solution

    |

  20. The sum of the first n terms of the series (1)/(2)+(3)/(4)+(7)/(8)+(15...

    Text Solution

    |