Home
Class 12
MATHS
The value of the expression 1.(2-omega)....

The value of the expression `1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2),` where omega is an imaginary cube root of unity, is………

A

`(1)/(4) n^(2) (n + 1)^(2)`

B

`(1)/(4) n^(2) (n + 1)^(2) - n`

C

`(1)/(4) n^(2) (n + 1)^(2) + n`

D

none

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

The value of the expression 1cdot(2-omega)(2-omega^2)+2cdot(3-omega)(3-omega^2)+....+(n-1)cdot(n-omega)(n-omega^2) ,where omega is an imaginary cube root of unity is

The value of the expression , (2-w)(2-w^2)+2.(3-w)(3-w^2)+....... ...... +(n-1).(n-w)(n-w^2) , where w is an imaginary cube root of unity is

Knowledge Check

  • The value of the expression (1 + (1)/(omega))(1+(1)/(omega^(2)))+ (2 + (1)/(omega))(2 + (1)/(omega^(2))) + (3 + (1)/(omega))(3 + (1)/(omega^(2))) +...+ (n + (1)/(omega)) (n + (1)/(omega^(2))) where omega is an imaginary cube root of unity is

    A
    `(n (n^(2)+ 2))/(3)`
    B
    `(n (n^(2)- 2))/(3)`
    C
    `(n(n^(2) + 1))/(3)`
    D
    none of these
  • The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

    A
    `(n(n^(2)+2))/(3)`
    B
    `(n(n^(2)-2))/(3)`
    C
    `(n^(2)(n+1)^(2)+4n)/(4)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega)(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

    If omega is a complex cube root of unity,then the value of the expression 1(2-omega)(2-omega^(2))+2(3-omega)(3-omega^(2))+...+(n-1)(n-omega)(n-omega^(2))(n-omega^(2))(n>=2) is equal to (A) (n^(2)(n+1)^(2))/(4)-n( B) (n^(2)(n+1)^(2))/(4)+n( C) (n^(2)(n+1))/(4)-n(D)(n(n+1)^(2))/(4)-n

    Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

    The value |(1 + omega,omega^(2),-omega),(1 + omega^(2),omega,-omega^(2)),(omega^(2)+omega,omega,-omega^(2))| is equal to ( omega is an imaginary cube root of unity)

    The area of a quadrilateral whose vertices are 1,i,omega,omega^(2), where (omega!=1) is a imaginary cube root of unity, is

    Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.