Home
Class 12
MATHS
The sum of the infinite series 1 + (1+a)...

The sum of the infinite series `1 + (1+a) x + (1 + a + a^(2)) x^(2) + (1 + a + a^(2) + a^(3)) x^(3)+…` where `0 lt a, x lt 1`, is

A

`1//(1 - x) (1 - a)`

B

`1//(1-x)(1-ax)`

C

`1//(1-a) (1 - ax)`

D

`1//(1-x) (1+a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \[ S = 1 + (1 + a)x + (1 + a + a^2)x^2 + (1 + a + a^2 + a^3)x^3 + \ldots \] where \(0 < a, x < 1\), we can follow these steps: ### Step 1: Rewrite the series We can express the series in a more manageable form. Notice that the \(n\)-th term of the series can be expressed as: \[ T_n = (1 + a + a^2 + \ldots + a^n)x^n \] So, we can rewrite the series as: \[ S = \sum_{n=0}^{\infty} (1 + a + a^2 + \ldots + a^n)x^n \] ### Step 2: Use the formula for the sum of a geometric series The sum of the first \(n\) terms of a geometric series can be expressed as: \[ 1 + a + a^2 + \ldots + a^n = \frac{1 - a^{n+1}}{1 - a} \] Thus, we can rewrite \(T_n\): \[ T_n = \frac{1 - a^{n+1}}{1 - a} x^n \] ### Step 3: Substitute back into the series Now we can substitute \(T_n\) back into the series \(S\): \[ S = \sum_{n=0}^{\infty} \frac{1 - a^{n+1}}{1 - a} x^n \] ### Step 4: Split the series We can split the series into two parts: \[ S = \frac{1}{1 - a} \sum_{n=0}^{\infty} x^n - \frac{1}{1 - a} \sum_{n=0}^{\infty} a^{n+1} x^n \] ### Step 5: Calculate the first series The first series is a standard geometric series: \[ \sum_{n=0}^{\infty} x^n = \frac{1}{1 - x} \] ### Step 6: Calculate the second series The second series can be factored: \[ \sum_{n=0}^{\infty} a^{n+1} x^n = a \sum_{n=0}^{\infty} (ax)^n = \frac{a}{1 - ax} \] ### Step 7: Combine the results Now we can combine the results: \[ S = \frac{1}{1 - a} \left( \frac{1}{1 - x} - \frac{a}{1 - ax} \right) \] ### Step 8: Simplify the expression To simplify, we can find a common denominator: \[ S = \frac{1}{1 - a} \cdot \frac{(1 - ax) - a(1 - x)}{(1 - x)(1 - ax)} \] This simplifies to: \[ S = \frac{1 - ax - a + ax}{(1 - a)(1 - x)(1 - ax)} = \frac{1 - a}{(1 - a)(1 - x)(1 - ax)} = \frac{1}{(1 - x)(1 - ax)} \] ### Final Result Thus, the sum of the infinite series is: \[ S = \frac{1}{(1 - x)(1 - ax)} \]
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

3x - 2 lt 2x + 1

3(1 - x ) lt 2 (x + 4)

(2x + 3) / (x ^ (2) + x-12) <= (1) / (2)

If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…. , is (35)/(16) , where |x| lt 1 , then 'x' equals to

(1) / (x + 1)-(2) / (x ^ (4) -x + 1) <(1-2x) / (x ^ (3) +1)

If sec x cos 5x+1=0 , where 0lt x lt 2pi , then x=

ML KHANNA-PROGRESSIONS -PROBLEM SET - 4 (MULTIPLE CHOICE QUESTIONS)
  1. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  2. For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) ...

    Text Solution

    |

  3. The sum of the series (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+…. ad infinity...

    Text Solution

    |

  4. If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value o...

    Text Solution

    |

  5. The sum of the infinite series 1 + (1+a) x + (1 + a + a^(2)) x^(2) + (...

    Text Solution

    |

  6. Sum of the series 1 + 2 + 4 + 7 +…+ 67 is equal to

    Text Solution

    |

  7. 99^(th) term of the series 2 + 7 + 14 + 23 + 34 +…is

    Text Solution

    |

  8. Find the 50th term of the series 2+3+6+11+18+….

    Text Solution

    |

  9. Let P = 3^(1//3). 3^(2//9) . 3^(3//27)…oo, then P^(1//3) is equal to

    Text Solution

    |

  10. 2^(1//4).4^(1//8).8^(1//16).16^(1//32)…. is equal to

    Text Solution

    |

  11. If 3 + (1)/(4) (3 + d) + (1)/(4^(2)) (3 + 2d)+…oo = 8, then the value ...

    Text Solution

    |

  12. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The sum o f series 1+4/5+7/(5^2)+(10)/(5^3)+oo is 7//16 b. 5//16 c. ...

    Text Solution

    |

  15. The sum to infinity of the series 1 + (2)/(3) + (6)/(3^(2)) + (10)/(3^...

    Text Solution

    |

  16. The sum of 0. 2+0004+0. 00006+0. 0000008+... to oo is (200)/(891) b. ...

    Text Solution

    |

  17. The sum of the first n terms of the series (1)/(2)+(3)/(4)+(7)/(8)+(15...

    Text Solution

    |

  18. Sum of the series 1 + 3 + 7 + 15 + 31 +… to n terms is

    Text Solution

    |

  19. Sum of the series 1 + 2.2 + 3.2^(2) + 4.2^(3)+…+ 100.2^(99) is

    Text Solution

    |

  20. The positive numbers are written in a triangular array as shown. {:(...

    Text Solution

    |