Home
Class 12
MATHS
Let P = 3^(1//3). 3^(2//9) . 3^(3//27)…o...

Let `P = 3^(1//3). 3^(2//9) . 3^(3//27)…oo`, then `P^(1//3)` is equal to

A

`3^(2//3)`

B

`sqrt(3)`

C

`3^(1//3)`

D

`3^(1//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite product \( P = 3^{1/3} \cdot 3^{2/9} \cdot 3^{3/27} \cdots \) and then find \( P^{1/3} \). ### Step-by-Step Solution: 1. **Express the Product**: We can express \( P \) as: \[ P = 3^{1/3} \cdot 3^{2/9} \cdot 3^{3/27} \cdots \] This can be rewritten using the property of exponents: \[ P = 3^{\left(\frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \cdots \right)} \] 2. **Identify the Series**: The series in the exponent is: \[ S = \frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \cdots \] We can rewrite the terms: \[ S = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \cdots \] 3. **Multiply by \( \frac{1}{3} \)**: To find a relation for \( S \), multiply the entire series by \( \frac{1}{3} \): \[ \frac{S}{3} = \frac{1}{3^2} + \frac{2}{3^3} + \frac{3}{3^4} + \cdots \] 4. **Subtract the Two Series**: Now, subtract \( \frac{S}{3} \) from \( S \): \[ S - \frac{S}{3} = \left(\frac{1}{3} - \frac{1}{3^2}\right) + \left(\frac{2}{9} - \frac{2}{27}\right) + \left(\frac{3}{27} - \frac{3}{81}\right) + \cdots \] This simplifies to: \[ \frac{2S}{3} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots \] 5. **Recognize the Geometric Series**: The right-hand side is a geometric series with first term \( \frac{1}{3} \) and common ratio \( \frac{1}{3} \): \[ \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{3}} = \frac{1/3}{2/3} = \frac{1}{2} \] 6. **Solve for \( S \)**: Thus, we have: \[ \frac{2S}{3} = \frac{1}{2} \] Multiplying both sides by \( \frac{3}{2} \): \[ S = \frac{3}{4} \] 7. **Substitute Back into \( P \)**: Now substituting \( S \) back into the expression for \( P \): \[ P = 3^{S} = 3^{3/4} \] 8. **Find \( P^{1/3} \)**: Finally, we need to find \( P^{1/3} \): \[ P^{1/3} = \left(3^{3/4}\right)^{1/3} = 3^{3/4 \cdot 1/3} = 3^{1/4} \] ### Final Answer: Thus, \( P^{1/3} = 3^{1/4} \).
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (TRUE AND FALSE) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 4 (FILL IN THE BLANKS) |7 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 3 (FILL IN THE BLANKS) |1 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If p = x^(1//3) + x^(-1//3), then p^3 - 3p is equal to :

If quad nP_(3):^(n)P_(2)=3:1, then n is equal to

The vlaue of 9^(1//3)xx9^(1//9)xx9^(1//27)xx………oo is :

Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P, then determinant of (P^(2)+Q^(2)) is equal to (1)2(2)1(3)0(4)1

If (a+(1)/(a))^(2)=9 , then a^(3)+(1)/(a^(3)) equals

ML KHANNA-PROGRESSIONS -PROBLEM SET - 4 (MULTIPLE CHOICE QUESTIONS)
  1. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  2. For and odd integer n ge 1, n^(3) - (n - 1)^(3) + …… + (- 1)^(n-1) ...

    Text Solution

    |

  3. The sum of the series (1)/(3.5) + (1)/(5.7) + (1)/(7.9)+…. ad infinity...

    Text Solution

    |

  4. If Sigma(r=1)^(n)t(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value o...

    Text Solution

    |

  5. The sum of the infinite series 1 + (1+a) x + (1 + a + a^(2)) x^(2) + (...

    Text Solution

    |

  6. Sum of the series 1 + 2 + 4 + 7 +…+ 67 is equal to

    Text Solution

    |

  7. 99^(th) term of the series 2 + 7 + 14 + 23 + 34 +…is

    Text Solution

    |

  8. Find the 50th term of the series 2+3+6+11+18+….

    Text Solution

    |

  9. Let P = 3^(1//3). 3^(2//9) . 3^(3//27)…oo, then P^(1//3) is equal to

    Text Solution

    |

  10. 2^(1//4).4^(1//8).8^(1//16).16^(1//32)…. is equal to

    Text Solution

    |

  11. If 3 + (1)/(4) (3 + d) + (1)/(4^(2)) (3 + 2d)+…oo = 8, then the value ...

    Text Solution

    |

  12. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  13. The sum to infinite terms of the arithmetic - gemoetric progression 3,...

    Text Solution

    |

  14. The sum o f series 1+4/5+7/(5^2)+(10)/(5^3)+oo is 7//16 b. 5//16 c. ...

    Text Solution

    |

  15. The sum to infinity of the series 1 + (2)/(3) + (6)/(3^(2)) + (10)/(3^...

    Text Solution

    |

  16. The sum of 0. 2+0004+0. 00006+0. 0000008+... to oo is (200)/(891) b. ...

    Text Solution

    |

  17. The sum of the first n terms of the series (1)/(2)+(3)/(4)+(7)/(8)+(15...

    Text Solution

    |

  18. Sum of the series 1 + 3 + 7 + 15 + 31 +… to n terms is

    Text Solution

    |

  19. Sum of the series 1 + 2.2 + 3.2^(2) + 4.2^(3)+…+ 100.2^(99) is

    Text Solution

    |

  20. The positive numbers are written in a triangular array as shown. {:(...

    Text Solution

    |