Home
Class 12
MATHS
For 0 lt theta lt (pi)/(4), let x = sum(...

For `0 lt theta lt (pi)/(4)`, let `x = sum_(n = 0)^(oo) sin^(2n) theta, y = sum_(n = 0)^(oo) cos^(2n)theta`, then match the entries of column-I with column-II
`{:(,"Column-I",,"Column-II"),((a),sum_(0)^(oo) sin^(2n) theta cos^(2n)theta,(p),(xy^(2))/(xy^(2)-1)),((b),sum_(0)^(oo) tan^(2n) theta,(q),(y)/(y-x)),((c),sum_(0)^(oo) sin^(2n) theta cos^(4n) theta,(r),(xy)/(xy - 1)),((d),sum_(0)^(oo) cos^(2n) theta sin^(4n) theta,(s),(x^(2)y)/(x^(2)y - 1)):}`

Text Solution

Verified by Experts

The correct Answer is:
`(a) rarr (r), (b) rarr (q), (c) rarr (s), (d) rarr (p)`
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST |29 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta, phi lt (pi)/(2), x = sum_(n=0)^(oo)cos^(2n)theta, y=sum_(n=0)^(oo)sin^(2n)phi and z=sum_(n=0)^(oo)cos^(2n)theta*sin^(2n)phi then :

Let x= sum_(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum_(n=0)^oo (costheta)^(2n) qhere theta in (0,pi/4) , then

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If 0

If x Sigma_(n=0)^(oo) (-1)^n " tan "^(2n) " and " y = Sigma_(n=0)^(oo) " cos "^(2n) theta for 0 lt theta lt pi/4 , then :

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

let 0