Home
Class 12
MATHS
The vector c directed along the bisector...

The vector c directed along the bisectors of the angle between the vectors ` a = 7i- 4j - 4k` and `b = -2i - j + 2k` if `|c| = 3sqrt(6)` is given by

A

`i - 7j + 2k`

B

`i + 7j -2k`

C

`-i + 7j -2k`

D

`i-7j-2k`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \mathbf{c} \) directed along the bisector of the angle between the vectors \( \mathbf{a} = 7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k} \) and \( \mathbf{b} = -2\mathbf{i} - \mathbf{j} + 2\mathbf{k} \) with the magnitude \( |\mathbf{c}| = 3\sqrt{6} \), we can follow these steps: ### Step 1: Calculate the unit vectors of \( \mathbf{a} \) and \( \mathbf{b} \) First, we need to find the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \). \[ |\mathbf{a}| = \sqrt{7^2 + (-4)^2 + (-4)^2} = \sqrt{49 + 16 + 16} = \sqrt{81} = 9 \] \[ |\mathbf{b}| = \sqrt{(-2)^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] Now, we can find the unit vectors \( \hat{a} \) and \( \hat{b} \): \[ \hat{a} = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}}{9} \] \[ \hat{b} = \frac{\mathbf{b}}{|\mathbf{b}|} = \frac{-2\mathbf{i} - \mathbf{j} + 2\mathbf{k}}{3} \] ### Step 2: Express the vector \( \mathbf{c} \) The vector \( \mathbf{c} \) along the bisector of the angle between \( \mathbf{a} \) and \( \mathbf{b} \) can be expressed as: \[ \mathbf{c} = \lambda (\hat{a} + \hat{b}) \] ### Step 3: Substitute the unit vectors into the equation Substituting \( \hat{a} \) and \( \hat{b} \): \[ \mathbf{c} = \lambda \left( \frac{7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}}{9} + \frac{-2\mathbf{i} - \mathbf{j} + 2\mathbf{k}}{3} \right) \] To combine these, we need a common denominator. The common denominator is 9: \[ \mathbf{c} = \lambda \left( \frac{7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}}{9} + \frac{-6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}}{9} \right) \] \[ \mathbf{c} = \lambda \left( \frac{(7 - 6)\mathbf{i} + (-4 - 3)\mathbf{j} + (-4 + 6)\mathbf{k}}{9} \right) \] \[ \mathbf{c} = \lambda \left( \frac{1\mathbf{i} - 7\mathbf{j} + 2\mathbf{k}}{9} \right) \] ### Step 4: Find the magnitude of \( \mathbf{c} \) The magnitude of \( \mathbf{c} \) is given as \( |\mathbf{c}| = 3\sqrt{6} \): \[ |\mathbf{c}| = |\lambda| \cdot \frac{1}{9} \sqrt{1^2 + (-7)^2 + 2^2} \] Calculating the magnitude inside the square root: \[ \sqrt{1 + 49 + 4} = \sqrt{54} \] Thus, \[ |\mathbf{c}| = |\lambda| \cdot \frac{\sqrt{54}}{9} \] Setting this equal to \( 3\sqrt{6} \): \[ |\lambda| \cdot \frac{\sqrt{54}}{9} = 3\sqrt{6} \] ### Step 5: Solve for \( \lambda \) Cross-multiplying gives: \[ |\lambda| \cdot \sqrt{54} = 27\sqrt{6} \] Now, simplifying \( \sqrt{54} = 3\sqrt{6} \): \[ |\lambda| \cdot 3\sqrt{6} = 27\sqrt{6} \] Dividing both sides by \( 3\sqrt{6} \): \[ |\lambda| = 9 \] ### Step 6: Write the final expression for \( \mathbf{c} \) Substituting \( \lambda \) back into the expression for \( \mathbf{c} \): \[ \mathbf{c} = 9 \cdot \frac{1\mathbf{i} - 7\mathbf{j} + 2\mathbf{k}}{9} = \mathbf{i} - 7\mathbf{j} + 2\mathbf{k} \] Thus, the vector \( \mathbf{c} \) directed along the bisector is: \[ \mathbf{c} = \mathbf{i} - 7\mathbf{j} + 2\mathbf{k} \quad \text{or} \quad \mathbf{c} = -\mathbf{i} + 7\mathbf{j} - 2\mathbf{k} \quad \text{(considering the negative value of } \lambda\text{)} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE ) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The vector vec x directed along the bisector of the angle between the vector vec a=7vec i-4vec j-4vec k and vec b=-2vec i-vec j+2vec k if |x|=45 is

70.The vector ?, directed along the internal bisector of the anlge between the vectors?=71-4j- 4k and b=-2i-]+ 2k with |= 56 is:(A) (1-7]+2k(B) (si +5j-24) (c) (+7]+26) ((51+55+)

A vector of magnitude 2 along a bisector of the angle between the two vectors 2i2j+k and i+2j-2k is

The angle between the vectors i-j+k and -i+j+2k is

Find the sine of the angle between the vectors a and b, if a=i-j+k" and "b=-i+j+2k .

If a vector vec r of magnitude 3sqrt(6) is directed along the bisector of the angle between the vectors vec a=7vec i-4vec j-4vec k and vec b=-2vec i-vec j+2vec k, then vec r is equal to

The vector vec(r) , directed along the external bisector of the angle between the vectors vec(a) = 7hat(i) - 4hat(j) + 4hat(k) and vec(b) = 2hat(i) - hat(j) + 2hat(k) with |vec(r)| = 5sqrt6 , is

" The angle between the vectors "2i+j-3k" and "3i-2j-k" is "