Home
Class 12
MATHS
If a = i +j + k, b = 4i + 3j + 4k and c ...

If `a = i +j + k, b = 4i + 3j + 4k and c = i + alphaj + betak` are linearly dependent vectors and `|c| = sqrt(3)` , then

A

`alpha =1, beta =-1`

B

`alpha =1, beta =pm 1`

C

`alpha = -1, beta = pm1`

D

`alpha = pm 1, beta =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given vectors and their conditions for linear dependence and magnitude. ### Step 1: Understand the vectors We are given three vectors: - \( \mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \) - \( \mathbf{b} = 4\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} \) - \( \mathbf{c} = \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k} \) ### Step 2: Set up the condition for linear dependence The vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are linearly dependent if the determinant of the matrix formed by their components is zero: \[ \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant We can calculate the determinant using cofactor expansion: \[ \begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha & \beta \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & 4 \\ \alpha & \beta \end{vmatrix} - 1 \cdot \begin{vmatrix} 4 & 4 \\ 1 & \beta \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 3 \\ 1 & \alpha \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 3 & 4 \\ \alpha & \beta \end{vmatrix} = 3\beta - 4\alpha \) 2. \( \begin{vmatrix} 4 & 4 \\ 1 & \beta \end{vmatrix} = 4\beta - 4 \) 3. \( \begin{vmatrix} 4 & 3 \\ 1 & \alpha \end{vmatrix} = 4\alpha - 3 \) Putting it all together: \[ 3\beta - 4\alpha - (4\beta - 4) + (4\alpha - 3) = 0 \] Simplifying this gives: \[ 3\beta - 4\alpha - 4\beta + 4 + 4\alpha - 3 = 0 \] Combining like terms: \[ -\beta + \alpha + 1 = 0 \] Thus, we have: \[ \alpha - \beta + 1 = 0 \quad \text{(1)} \] ### Step 4: Use the magnitude condition We are also given that the magnitude of vector \( \mathbf{c} \) is \( \sqrt{3} \): \[ |\mathbf{c}| = \sqrt{1^2 + \alpha^2 + \beta^2} = \sqrt{3} \] Squaring both sides: \[ 1 + \alpha^2 + \beta^2 = 3 \] This simplifies to: \[ \alpha^2 + \beta^2 = 2 \quad \text{(2)} \] ### Step 5: Solve the equations From equation (1), we can express \( \alpha \) in terms of \( \beta \): \[ \alpha = \beta - 1 \] Substituting this into equation (2): \[ (\beta - 1)^2 + \beta^2 = 2 \] Expanding: \[ \beta^2 - 2\beta + 1 + \beta^2 = 2 \] Combining terms: \[ 2\beta^2 - 2\beta + 1 - 2 = 0 \] This simplifies to: \[ 2\beta^2 - 2\beta - 1 = 0 \] Dividing by 2: \[ \beta^2 - \beta - \frac{1}{2} = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula: \[ \beta = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-\frac{1}{2})}}{2 \cdot 1} \] \[ \beta = \frac{1 \pm \sqrt{1 + 2}}{2} = \frac{1 \pm \sqrt{3}}{2} \] ### Step 7: Find \( \alpha \) Using \( \alpha = \beta - 1 \): 1. If \( \beta = \frac{1 + \sqrt{3}}{2} \): \[ \alpha = \frac{1 + \sqrt{3}}{2} - 1 = \frac{-1 + \sqrt{3}}{2} \] 2. If \( \beta = \frac{1 - \sqrt{3}}{2} \): \[ \alpha = \frac{1 - \sqrt{3}}{2} - 1 = \frac{-1 - \sqrt{3}}{2} \] ### Final Results Thus, the values of \( \alpha \) and \( \beta \) are: - \( \beta = 1 \) and \( \alpha = 0 \) - \( \beta = \frac{1 + \sqrt{3}}{2} \) and \( \alpha = \frac{-1 + \sqrt{3}}{2} \) - \( \beta = \frac{1 - \sqrt{3}}{2} \) and \( \alpha = \frac{-1 - \sqrt{3}}{2} \)
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE ) |3 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

vec a=hat i+hat j+hat k,vec b=4hat i+3hat j+4hat k and vec c=hat i+alphahat i+betahat k are linearly dependent vectors and |vec c|=sqrt(3). then

bar(a)=bar(i)+bar(j)+bar(k),bar(b)=4bar(i)+3bar(j)+4bar(k),bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent vectors and |bar(c)|=sqrt(3) then

If bara = 2i + 3j - k , barb = - i + 2 j - 4k and barc = i + j + k . then (a xx b) · ( a xx c)

If a=3i+2j+k, b=5i-j+2k" and "c=i+j+k , find [a b c]

A=4i+4j-4k and B=3i+j4k , then angle between vectors A and B is

Examine if vec(i) - 3vec(j) + 2vec(k), 2vec(i) - 4vec(j) - vec(k) and 3vec(i) + 2vec(j) - vec(k) are linearly independent or dependent .