Home
Class 12
MATHS
If the position vectors of three points ...

If the position vectors of three points A, B, C are respectively `i+j+k, 2i + 3j -4k and 7i+4j+9k`, then the unit vector perpendicular to the plane of triangle ABCis

A

`(31i-38j-9k)`

B

`(31i-38j-9k)/(sqrt(2486))`

C

`(31i + 38j +9k)/(sqrt(2486))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the plane of triangle ABC given the position vectors of points A, B, and C, we can follow these steps: ### Step 1: Identify the position vectors The position vectors of points A, B, and C are given as: - \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \vec{B} = 2\hat{i} + 3\hat{j} - 4\hat{k} \) - \( \vec{C} = 7\hat{i} + 4\hat{j} + 9\hat{k} \) ### Step 2: Find the vectors AB and BC To find the vectors \( \vec{AB} \) and \( \vec{BC} \), we can use the formula: - \( \vec{AB} = \vec{B} - \vec{A} \) - \( \vec{BC} = \vec{C} - \vec{B} \) Calculating \( \vec{AB} \): \[ \vec{AB} = (2\hat{i} + 3\hat{j} - 4\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) = (2-1)\hat{i} + (3-1)\hat{j} + (-4-1)\hat{k} = \hat{i} + 2\hat{j} - 5\hat{k} \] Calculating \( \vec{BC} \): \[ \vec{BC} = (7\hat{i} + 4\hat{j} + 9\hat{k}) - (2\hat{i} + 3\hat{j} - 4\hat{k}) = (7-2)\hat{i} + (4-3)\hat{j} + (9+4)\hat{k} = 5\hat{i} + 1\hat{j} + 13\hat{k} \] ### Step 3: Find the cross product \( \vec{AB} \times \vec{BC} \) The cross product will give us a vector perpendicular to the plane formed by points A, B, and C. We can calculate it using the determinant of a matrix: \[ \vec{AB} \times \vec{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -5 \\ 5 & 1 & 13 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & -5 \\ 1 & 13 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -5 \\ 5 & 13 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 5 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & -5 \\ 1 & 13 \end{vmatrix} = (2 \cdot 13) - (-5 \cdot 1) = 26 + 5 = 31 \) 2. \( \begin{vmatrix} 1 & -5 \\ 5 & 13 \end{vmatrix} = (1 \cdot 13) - (-5 \cdot 5) = 13 + 25 = 38 \) 3. \( \begin{vmatrix} 1 & 2 \\ 5 & 1 \end{vmatrix} = (1 \cdot 1) - (2 \cdot 5) = 1 - 10 = -9 \) Putting it all together: \[ \vec{AB} \times \vec{BC} = 31\hat{i} - 38\hat{j} - 9\hat{k} \] ### Step 4: Find the magnitude of the cross product The magnitude of the vector \( \vec{P} = 31\hat{i} - 38\hat{j} - 9\hat{k} \) is given by: \[ |\vec{P}| = \sqrt{31^2 + (-38)^2 + (-9)^2} = \sqrt{961 + 1444 + 81} = \sqrt{2486} \] ### Step 5: Find the unit vector The unit vector \( \hat{n} \) perpendicular to the plane of triangle ABC is given by: \[ \hat{n} = \frac{\vec{P}}{|\vec{P}|} = \frac{31\hat{i} - 38\hat{j} - 9\hat{k}}{\sqrt{2486}} \] ### Final Answer Thus, the unit vector perpendicular to the plane of triangle ABC is: \[ \hat{n} = \frac{31}{\sqrt{2486}} \hat{i} - \frac{38}{\sqrt{2486}} \hat{j} - \frac{9}{\sqrt{2486}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

A unit vector perpendicular to 3i+4j" and "i-j+k is

Given a=i+j-k, b=-i+2j+k" and "c=-i+2j-k . A unit vector perpendicular to both a + b and b + c is

Find vectors perpendicular to the plane of vectors a=2i-6j+3k" and "b=4i+3j+k .

Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the vector perpendicular to both the vectors?

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. Read the following passage and answer the questions. Consider the line...

    Text Solution

    |

  2. The unit vector perpendicular to vector i -j and i + j forming a righ...

    Text Solution

    |

  3. If the position vectors of three points A, B, C are respectively i+j+k...

    Text Solution

    |

  4. A unit vector normal to the plane through the point i,2j,3k is :

    Text Solution

    |

  5. A unit vector making an obtuse angle with x-axis and perpendicular to ...

    Text Solution

    |

  6. The unit vector bot to each of the vector 2i-j+k and 3i+4j-k is

    Text Solution

    |

  7. If A = 2i + 2j-k, B=6i-3j+k,then AxxB will b given by

    Text Solution

    |

  8. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  9. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  10. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  11. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  12. vecA = (1, -1, 1), vecC = (-1,-1,0) are given vectors then the vector ...

    Text Solution

    |

  13. The vector vecB = 3j + 4k is to be written as the sum of a vector vecB...

    Text Solution

    |

  14. (3)/(2)(i+j)

    Text Solution

    |

  15. and vecB(2) is

    Text Solution

    |

  16. Let the position vectors of the points P, A and B be r,i+j+k and -i+k....

    Text Solution

    |

  17. If a xx b = c xx b ne 0, then

    Text Solution

    |

  18. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  19. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  20. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |