Home
Class 12
MATHS
The unit vector bot to each of the vecto...

The unit vector `bot` to each of the vector `2i-j+k` and `3i+4j-k` is

A

`-3i+4j+11k`

B

`(-3i+5j-11k)//sqrt(155)`

C

`(-3i+5j+11k)//sqrt((155))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to both vectors \( \mathbf{A} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \) and \( \mathbf{B} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k} \), we will follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{A} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} \] \[ \mathbf{B} = 3\mathbf{i} + 4\mathbf{j} - \mathbf{k} \] ### Step 2: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) To find a vector that is perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \), we compute the cross product \( \mathbf{A} \times \mathbf{B} \). The formula for the cross product in determinant form is: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 1 \\ 3 & 4 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant: \[ \mathbf{A} \times \mathbf{B} = \mathbf{i} \begin{vmatrix} -1 & 1 \\ 4 & -1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \mathbf{i} \): \[ (-1)(-1) - (1)(4) = 1 - 4 = -3 \] 2. For \( \mathbf{j} \): \[ (2)(-1) - (1)(3) = -2 - 3 = -5 \quad \text{(remember to change the sign)} \Rightarrow +5 \] 3. For \( \mathbf{k} \): \[ (2)(4) - (-1)(3) = 8 + 3 = 11 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = -3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k} \] ### Step 4: Find the magnitude of the cross product The magnitude \( |\mathbf{C}| \) of the vector \( \mathbf{C} = -3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k} \) is calculated as follows: \[ |\mathbf{C}| = \sqrt{(-3)^2 + 5^2 + 11^2} = \sqrt{9 + 25 + 121} = \sqrt{155} \] ### Step 5: Calculate the unit vector The unit vector \( \mathbf{u} \) in the direction of \( \mathbf{C} \) is given by: \[ \mathbf{u} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{-3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k}}{\sqrt{155}} \] ### Final Answer Thus, the unit vector perpendicular to both vectors is: \[ \mathbf{u} = \frac{-3}{\sqrt{155}} \mathbf{i} + \frac{5}{\sqrt{155}} \mathbf{j} + \frac{11}{\sqrt{155}} \mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Dine the unit vector peroendicular to each of the vectors 3 hat i+ hat j 2 hat k and 2 hat i- 2 hat j = 4 hat k .

The unit vector which is orthogonal to the vector 5i+2j+6k and is coplanar with the vectors 2i+j+k" and "i-j+k is

Find a unit vector perpendicular to each of the vector -> a+ -> b and -> a- -> b where -> a=3 hat i+2 hat j+2 hat k and -> b= hat i+2 hat j-2 hat k

The scalar product of the vector i+j+k with a unit vector along the sum of vectors 2i+4j-5k and lambda i+2j+3k is equal to one.Find the value of lambda

Find vec a unit vector perpendicular to each of the vectors vec a=3i+2j-3k and vec b=i+j-k

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

Find a unit vector perpendicular to each of the vectors a+b and a-b, where a=3i+2j+2k and b=i+2k-2k

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. A unit vector normal to the plane through the point i,2j,3k is :

    Text Solution

    |

  2. A unit vector making an obtuse angle with x-axis and perpendicular to ...

    Text Solution

    |

  3. The unit vector bot to each of the vector 2i-j+k and 3i+4j-k is

    Text Solution

    |

  4. If A = 2i + 2j-k, B=6i-3j+k,then AxxB will b given by

    Text Solution

    |

  5. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  6. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  7. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  8. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  9. vecA = (1, -1, 1), vecC = (-1,-1,0) are given vectors then the vector ...

    Text Solution

    |

  10. The vector vecB = 3j + 4k is to be written as the sum of a vector vecB...

    Text Solution

    |

  11. (3)/(2)(i+j)

    Text Solution

    |

  12. and vecB(2) is

    Text Solution

    |

  13. Let the position vectors of the points P, A and B be r,i+j+k and -i+k....

    Text Solution

    |

  14. If a xx b = c xx b ne 0, then

    Text Solution

    |

  15. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  16. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  17. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |

  18. theta is the angle between two vectors a and b then a. b le 0 only if

    Text Solution

    |

  19. If a, b, c be three non-zero vectors, then the equation a. b = a. c ...

    Text Solution

    |

  20. If a. b = a . C and axx b = a xx c, then

    Text Solution

    |