Home
Class 12
MATHS
If alpha = 2i + 3j - k, beta = -i + 2j-4...

If `alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k` then the value of `(alpha xx beta).(alpha xx gamma)` is equal to

A

60

B

64

C

74

D

`-74`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \((\alpha \times \beta) \cdot (\alpha \times \gamma)\) where \(\alpha = 2i + 3j - k\), \(\beta = -i + 2j - 4k\), and \(\gamma = i + j + k\), we will follow these steps: ### Step 1: Calculate \(\alpha \times \beta\) To compute the cross product \(\alpha \times \beta\), we can use the determinant of a matrix formed by the unit vectors \(i\), \(j\), \(k\) and the components of \(\alpha\) and \(\beta\): \[ \alpha \times \beta = \begin{vmatrix} i & j & k \\ 2 & 3 & -1 \\ -1 & 2 & -4 \end{vmatrix} \] Calculating this determinant: \[ = i \begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} - j \begin{vmatrix} 2 & -1 \\ -1 & -4 \end{vmatrix} + k \begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} = (3 \cdot -4) - (-1 \cdot 2) = -12 + 2 = -10 \) 2. \( \begin{vmatrix} 2 & -1 \\ -1 & -4 \end{vmatrix} = (2 \cdot -4) - (-1 \cdot -1) = -8 - 1 = -9 \) 3. \( \begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} = (2 \cdot 2) - (3 \cdot -1) = 4 + 3 = 7 \) Putting it all together: \[ \alpha \times \beta = -10i + 9j + 7k \] ### Step 2: Calculate \(\alpha \times \gamma\) Now we compute \(\alpha \times \gamma\) using a similar determinant: \[ \alpha \times \gamma = \begin{vmatrix} i & j & k \\ 2 & 3 & -1 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = i \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} - j \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + k \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = (3 \cdot 1) - (-1 \cdot 1) = 3 + 1 = 4 \) 2. \( \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (-1 \cdot 1) = 2 + 1 = 3 \) 3. \( \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (3 \cdot 1) = 2 - 3 = -1 \) Putting it all together: \[ \alpha \times \gamma = 4i - 3j - k \] ### Step 3: Calculate \((\alpha \times \beta) \cdot (\alpha \times \gamma)\) Now we find the dot product: \[ (\alpha \times \beta) \cdot (\alpha \times \gamma) = (-10i + 9j + 7k) \cdot (4i - 3j - k) \] Calculating the dot product: \[ = (-10 \cdot 4) + (9 \cdot -3) + (7 \cdot -1) \] Calculating each term: 1. \(-10 \cdot 4 = -40\) 2. \(9 \cdot -3 = -27\) 3. \(7 \cdot -1 = -7\) Adding these together: \[ -40 - 27 - 7 = -74 \] ### Final Answer The value of \((\alpha \times \beta) \cdot (\alpha \times \gamma)\) is \(-74\). ---
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If bara = 2i + 3j - k , barb = - i + 2 j - 4k and barc = i + j + k . then (a xx b) · ( a xx c)

Let the line of the shortest distance between the lines L_1 : vec r = (hat i 2 hat j 3 hat k) lambda (hat i - hat j hat k) and L_2 : vec r = (4 hat i 5 hat j 6 hat k) mu (hat i hat j - hat k) intersect L_1 and L_2 at P and Q respectively. If (alpha, beta, gamma) is the mid point of the line segment PQ, then 2(alpha beta gamma) is equal to ___________.

Let vec alpha=2i+3j-k and vec beta=i+j. If vec gamma is a unit vector,then the maximum value of [vec alpha xxvec beta,vec beta xxvec gamma,vec gamma xxvec alpha] is equal to

If alpha + beta + gamma = pi , then the value of the determinant |(e^(2i alpha),e^(-i gamma),e^(-i beta)),(e^(-i gamma),e^(2i beta),e^(-i alpha)),(e^(-i beta),e^(-i alpha),e^(2i gamma))| , is

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

i(jxx k ) + j ( k xx i) + k (j xx i) is equal to

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. The unit vector bot to each of the vector 2i-j+k and 3i+4j-k is

    Text Solution

    |

  2. If A = 2i + 2j-k, B=6i-3j+k,then AxxB will b given by

    Text Solution

    |

  3. If alpha = 2i + 3j - k, beta = -i + 2j-4k, gamma = i+j+k then the valu...

    Text Solution

    |

  4. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  5. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  6. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  7. vecA = (1, -1, 1), vecC = (-1,-1,0) are given vectors then the vector ...

    Text Solution

    |

  8. The vector vecB = 3j + 4k is to be written as the sum of a vector vecB...

    Text Solution

    |

  9. (3)/(2)(i+j)

    Text Solution

    |

  10. and vecB(2) is

    Text Solution

    |

  11. Let the position vectors of the points P, A and B be r,i+j+k and -i+k....

    Text Solution

    |

  12. If a xx b = c xx b ne 0, then

    Text Solution

    |

  13. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  14. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  15. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |

  16. theta is the angle between two vectors a and b then a. b le 0 only if

    Text Solution

    |

  17. If a, b, c be three non-zero vectors, then the equation a. b = a. c ...

    Text Solution

    |

  18. If a. b = a . C and axx b = a xx c, then

    Text Solution

    |

  19. If vec(a) and vec(b) are two vectors such that vec(a).vec(b) = 0 and v...

    Text Solution

    |

  20. If a xx b = c and b xx c = a , then

    Text Solution

    |