Home
Class 12
MATHS
The vector a, b, c are equal in length a...

The vector a, b, c are equal in length and taken pairwise they mak equal-angles.
If `a=i+j, b=j+k` and c makes obtuse angle with x-axis, then c =

A

`-1,4,-1`

B

`1,0,1`

C

`-1//3,4//3,-1//3`

D

`1//3,-4//3,1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \mathbf{c} \) given that the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{c} \) are equal in length and make equal angles with each other. We are given: \[ \mathbf{a} = \mathbf{i} + \mathbf{j}, \quad \mathbf{b} = \mathbf{j} + \mathbf{k} \] ### Step 1: Calculate the Magnitudes of Vectors \( \mathbf{a} \) and \( \mathbf{b} \) The magnitude of vector \( \mathbf{a} \): \[ |\mathbf{a}| = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \] The magnitude of vector \( \mathbf{b} \): \[ |\mathbf{b}| = \sqrt{(0)^2 + (1)^2 + (1)^2} = \sqrt{2} \] ### Step 2: Set Up the Magnitude Condition for Vector \( \mathbf{c} \) Let \( \mathbf{c} = c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k} \). The magnitude of vector \( \mathbf{c} \) must also equal \( \sqrt{2} \): \[ |\mathbf{c}| = \sqrt{c_1^2 + c_2^2 + c_3^2} = \sqrt{2} \] Squaring both sides gives: \[ c_1^2 + c_2^2 + c_3^2 = 2 \quad \text{(Equation 1)} \] ### Step 3: Calculate the Angle Between Vectors \( \mathbf{a} \) and \( \mathbf{b} \) Using the dot product to find the angle \( \theta \) between \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{a} \cdot \mathbf{b} = (1)(0) + (1)(1) + (0)(1) = 1 \] The cosine of the angle is given by: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2} \] Thus, \( \theta = 60^\circ \). ### Step 4: Set Up the Angle Condition for Vectors \( \mathbf{a} \) and \( \mathbf{c} \) The angle between \( \mathbf{a} \) and \( \mathbf{c} \) must also be \( 60^\circ \): \[ \cos 60^\circ = \frac{1}{2} = \frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{a}| |\mathbf{c}|} \] Substituting the values: \[ \frac{(1)(c_1) + (1)(c_2) + (0)(c_3)}{\sqrt{2} \cdot \sqrt{2}} = \frac{c_1 + c_2}{2} = \frac{1}{2} \] This simplifies to: \[ c_1 + c_2 = 1 \quad \text{(Equation 2)} \] ### Step 5: Set Up the Angle Condition for Vectors \( \mathbf{b} \) and \( \mathbf{c} \) Similarly, for the angle between \( \mathbf{b} \) and \( \mathbf{c} \): \[ \cos 60^\circ = \frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{b}| |\mathbf{c}|} \] Calculating the dot product: \[ \mathbf{b} \cdot \mathbf{c} = (0)(c_1) + (1)(c_2) + (1)(c_3) = c_2 + c_3 \] Thus: \[ \frac{c_2 + c_3}{2} = \frac{1}{2} \implies c_2 + c_3 = 1 \quad \text{(Equation 3)} \] ### Step 6: Solve the System of Equations Now we have three equations: 1. \( c_1^2 + c_2^2 + c_3^2 = 2 \) (Equation 1) 2. \( c_1 + c_2 = 1 \) (Equation 2) 3. \( c_2 + c_3 = 1 \) (Equation 3) From Equation 2, we can express \( c_1 \): \[ c_1 = 1 - c_2 \] From Equation 3, we can express \( c_3 \): \[ c_3 = 1 - c_2 \] Substituting these into Equation 1: \[ (1 - c_2)^2 + c_2^2 + (1 - c_2)^2 = 2 \] Expanding: \[ (1 - 2c_2 + c_2^2) + c_2^2 + (1 - 2c_2 + c_2^2) = 2 \] Combining like terms: \[ 2 - 4c_2 + 3c_2^2 = 2 \] This simplifies to: \[ 3c_2^2 - 4c_2 = 0 \] Factoring out \( c_2 \): \[ c_2(3c_2 - 4) = 0 \] Thus, \( c_2 = 0 \) or \( c_2 = \frac{4}{3} \). ### Step 7: Find Corresponding Values of \( c_1 \) and \( c_3 \) 1. If \( c_2 = 0 \): - \( c_1 = 1 \) - \( c_3 = 1 \) - \( \mathbf{c} = \mathbf{i} + \mathbf{k} \) (which does not satisfy the obtuse angle condition). 2. If \( c_2 = \frac{4}{3} \): - \( c_1 = 1 - \frac{4}{3} = -\frac{1}{3} \) - \( c_3 = 1 - \frac{4}{3} = -\frac{1}{3} \) - \( \mathbf{c} = -\frac{1}{3} \mathbf{i} + \frac{4}{3} \mathbf{j} - \frac{1}{3} \mathbf{k} \) ### Conclusion The vector \( \mathbf{c} \) that makes an obtuse angle with the x-axis is: \[ \mathbf{c} = -\frac{1}{3} \mathbf{i} + \frac{4}{3} \mathbf{j} - \frac{1}{3} \mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The vectors vec a,vec b,vec c are of the same length and pairwise form equal angles.If vec a=hat i+hat j and vec b=hat j+hat k then vec c may be :

The vectors bar(a),bar(b) and bar(c) are of the same length and taken pair wise,they form equal angles with each other.If bar(a)=bar(i)+bar(j) and bar(b)=bar(j)+bar(k) ,then the coordinates of bar(c) are

A vector of magnitude 3 bisecting the angle between the vectors vec a=2vec i+vec j-vec k and vec b=vec i-2vec j+vec k and making an obtuse angle with vec b is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If vec(r )=x hat(i)+y hat(j)+x hat(k), find : (vec(r )xx hat(i)).(vec...

    Text Solution

    |

  2. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  3. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  4. vecA = (1, -1, 1), vecC = (-1,-1,0) are given vectors then the vector ...

    Text Solution

    |

  5. The vector vecB = 3j + 4k is to be written as the sum of a vector vecB...

    Text Solution

    |

  6. (3)/(2)(i+j)

    Text Solution

    |

  7. and vecB(2) is

    Text Solution

    |

  8. Let the position vectors of the points P, A and B be r,i+j+k and -i+k....

    Text Solution

    |

  9. If a xx b = c xx b ne 0, then

    Text Solution

    |

  10. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  11. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  12. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |

  13. theta is the angle between two vectors a and b then a. b le 0 only if

    Text Solution

    |

  14. If a, b, c be three non-zero vectors, then the equation a. b = a. c ...

    Text Solution

    |

  15. If a. b = a . C and axx b = a xx c, then

    Text Solution

    |

  16. If vec(a) and vec(b) are two vectors such that vec(a).vec(b) = 0 and v...

    Text Solution

    |

  17. If a xx b = c and b xx c = a , then

    Text Solution

    |

  18. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  19. If p = a xx (b + c) + b xx (c + a) + c xx (a + b) q = a xx (b xx c) ...

    Text Solution

    |

  20. If a and b are not perpendicular to each other and r xx a = b xx a, r....

    Text Solution

    |