Home
Class 12
MATHS
vecA = (1, -1, 1), vecC = (-1,-1,0) are ...

`vecA = (1, -1, 1), vecC = (-1,-1,0)` are given vectors then the vector B which satisfies `A xx B = C` and A.B = 1 is

A

`(1, 0, 0)`

B

`(0, 0, 1)`

C

`(0, -1, 0)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \vec{B} \) that satisfies the conditions \( \vec{A} \times \vec{B} = \vec{C} \) and \( \vec{A} \cdot \vec{B} = 1 \), given \( \vec{A} = (1, -1, 1) \) and \( \vec{C} = (-1, -1, 0) \). ### Step-by-Step Solution: 1. **Define the Vectors:** \[ \vec{A} = (1, -1, 1) \quad \text{and} \quad \vec{C} = (-1, -1, 0) \] Let \( \vec{B} = (x, y, z) \). 2. **Dot Product Condition:** We have the condition \( \vec{A} \cdot \vec{B} = 1 \): \[ \vec{A} \cdot \vec{B} = 1 \cdot x + (-1) \cdot y + 1 \cdot z = x - y + z = 1 \quad \text{(Equation 1)} \] 3. **Cross Product Condition:** We also have the condition \( \vec{A} \times \vec{B} = \vec{C} \). The cross product can be calculated using the determinant: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} \] Expanding this determinant: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} -1 & 1 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} \] Calculating the minors: \[ = \hat{i}((-1)z - 1y) - \hat{j}(1z - 1x) + \hat{k}(1y + 1x) \] \[ = \hat{i}(-z - y) - \hat{j}(z - x) + \hat{k}(y + x) \] Therefore, \[ \vec{A} \times \vec{B} = (-z - y, -(z - x), y + x) \] Setting this equal to \( \vec{C} = (-1, -1, 0) \): \[ -z - y = -1 \quad \text{(Equation 2)} \] \[ -(z - x) = -1 \quad \text{(Equation 3)} \] \[ y + x = 0 \quad \text{(Equation 4)} \] 4. **Solving the Equations:** From Equation 2: \[ z + y = 1 \quad \Rightarrow \quad z = 1 - y \quad \text{(Equation 5)} \] From Equation 3: \[ z - x = 1 \quad \Rightarrow \quad z = x + 1 \quad \text{(Equation 6)} \] Now we have two expressions for \( z \): \[ 1 - y = x + 1 \] Rearranging gives: \[ x + y = 0 \quad \Rightarrow \quad y = -x \quad \text{(Equation 7)} \] Substituting Equation 7 into Equation 1: \[ x - (-x) + z = 1 \quad \Rightarrow \quad 2x + z = 1 \] Using Equation 6: \[ 2x + (x + 1) = 1 \] \[ 3x + 1 = 1 \quad \Rightarrow \quad 3x = 0 \quad \Rightarrow \quad x = 0 \] Substituting \( x = 0 \) into Equation 7: \[ y = -0 = 0 \] Finally, substituting \( y = 0 \) into Equation 5: \[ z = 1 - 0 = 1 \] 5. **Final Result:** Therefore, the vector \( \vec{B} \) is: \[ \vec{B} = (0, 0, 1) \] ### Conclusion: The vector \( \vec{B} \) that satisfies both conditions is: \[ \vec{B} = (0, 0, 1) \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If vec A=(1,1,1),vec C=(0,1,-1) are given vectors,then prove that a vector vec B satisfying the equations vec A xxvec B=vec C and vec A*vec B=3 is ((5)/(3),(2)/(3),(2)/(3))

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3

If overset(to)(A) =(1,1,1) , overset(to)( C) =(0,1,-1) are given vectors then a vectors overset(to)(B) satisfying the equations overset(to)(A) xx overset(to)(B) = overset(to)( C) " and " overset(to)(A) ". " overset(to)(B) =3 is ………

Let veca=(3,-1,0) and vecb=(1/2, 3/2, 1) Fidnthe vector vec c satisfying vecaxxvecc =4vecb and veca.vecc=1

Given vectors a = (3, -1, 5) and b = (1, 2, -3). A vector c which is perpendicular to z-axis and satisfying c*a=9" and "c*b=-4 is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If the vectors vec c , vec a=x hat i+y hat j+z hat ka n d vec b= hat ...

    Text Solution

    |

  2. The vector a, b, c are equal in length and taken pairwise they mak equ...

    Text Solution

    |

  3. vecA = (1, -1, 1), vecC = (-1,-1,0) are given vectors then the vector ...

    Text Solution

    |

  4. The vector vecB = 3j + 4k is to be written as the sum of a vector vecB...

    Text Solution

    |

  5. (3)/(2)(i+j)

    Text Solution

    |

  6. and vecB(2) is

    Text Solution

    |

  7. Let the position vectors of the points P, A and B be r,i+j+k and -i+k....

    Text Solution

    |

  8. If a xx b = c xx b ne 0, then

    Text Solution

    |

  9. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  10. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  11. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |

  12. theta is the angle between two vectors a and b then a. b le 0 only if

    Text Solution

    |

  13. If a, b, c be three non-zero vectors, then the equation a. b = a. c ...

    Text Solution

    |

  14. If a. b = a . C and axx b = a xx c, then

    Text Solution

    |

  15. If vec(a) and vec(b) are two vectors such that vec(a).vec(b) = 0 and v...

    Text Solution

    |

  16. If a xx b = c and b xx c = a , then

    Text Solution

    |

  17. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  18. If p = a xx (b + c) + b xx (c + a) + c xx (a + b) q = a xx (b xx c) ...

    Text Solution

    |

  19. If a and b are not perpendicular to each other and r xx a = b xx a, r....

    Text Solution

    |

  20. Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) ...

    Text Solution

    |