Home
Class 12
MATHS
Three points with position vectors, a, b...

Three points with position vectors, a, b, c are collinear if

A

`a xx b + b xx c + c xx a = 0`

B

`a, b + b .c + c . A =0`

C

`a. (b xx c) = 0`

D

`a + b + c = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition for three points with position vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) to be collinear, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding Collinearity**: Three points \( A, B, C \) are collinear if the vectors \( \mathbf{AB} \) and \( \mathbf{AC} \) are parallel. This can be expressed mathematically as: \[ \mathbf{AB} = \mathbf{b} - \mathbf{a} \] \[ \mathbf{AC} = \mathbf{c} - \mathbf{a} \] 2. **Using Cross Product**: The vectors \( \mathbf{AB} \) and \( \mathbf{AC} \) are parallel if their cross product is zero: \[ \mathbf{AB} \times \mathbf{AC} = \mathbf{0} \] 3. **Substituting the Vectors**: Substitute the expressions for \( \mathbf{AB} \) and \( \mathbf{AC} \): \[ (\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a}) = \mathbf{0} \] 4. **Expanding the Cross Product**: Using the distributive property of the cross product: \[ \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{a} = \mathbf{0} \] Since the cross product of any vector with itself is zero (\( \mathbf{a} \times \mathbf{a} = \mathbf{0} \)), we simplify to: \[ \mathbf{b} \times \mathbf{c} - \mathbf{b} \times \mathbf{a} - \mathbf{a} \times \mathbf{c} = \mathbf{0} \] 5. **Rearranging the Equation**: Rearranging gives: \[ \mathbf{b} \times \mathbf{c} = \mathbf{b} \times \mathbf{a} + \mathbf{a} \times \mathbf{c} \] 6. **Final Condition**: The final condition for the points \( A, B, C \) to be collinear can be expressed as: \[ \mathbf{b} \times \mathbf{c} = \mathbf{0} \] or equivalently: \[ \mathbf{c} - \mathbf{a} = k(\mathbf{b} - \mathbf{a}) \quad \text{for some scalar } k \] ### Conclusion: Thus, the three points with position vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are collinear if: \[ \mathbf{b} \times \mathbf{c} = \mathbf{0} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then (OL)/(OA) + (OM)/(OB) =(ON)/(OC) Statement -2 : Three points with position vectors veca , vec b , vec c are collinear iff there exist scalars x, y, z not all zero such that x vec a + y vec b +z vec c = vec 0, " where " x +y + z=0.

Three points with position vectors vec(a), vec(b), vec(c ) will be collinear if there exist scalars x, y, z such that

Three points having position vectors bara,barb and barc will be collinear if

If a,b,c are non coplanar vectors prove that the points having the following position vectors are collinear: vec a,vec b,3vec a-2vec b

If vec a,vec b are two non-collinear vectors,prove that the points with position vectors vec a+vec b,vec a-vec b and vec a+lambdavec b are collinear for all real values of lambda

If a,b, are non coplanar vectors prove that the points having the following position vectors are collinear: vec a+vec b+vec c,4vec a+3vec b,10vec a+7vec b-2vec -

Three points whose position vectors are veca,vecb,vecc will be collinear if (A) lamdaveca+muvecb=(lamda+mu)vecc (B) vecaxxvecb+vecbxxvecc+veccxxveca=0 (C) [veca vecb vecc]=0 (D) none of these

the three points with position vectors (1,a,b);(a,2,b) and (a,b,3) are collinear in space,then the value of a+b is

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. a xx b = a xx c where (a ne 0) implies that

    Text Solution

    |

  2. If a, b, c be non-zero vectors, then which of the following statements...

    Text Solution

    |

  3. Three points with position vectors, a, b, c are collinear if

    Text Solution

    |

  4. theta is the angle between two vectors a and b then a. b le 0 only if

    Text Solution

    |

  5. If a, b, c be three non-zero vectors, then the equation a. b = a. c ...

    Text Solution

    |

  6. If a. b = a . C and axx b = a xx c, then

    Text Solution

    |

  7. If vec(a) and vec(b) are two vectors such that vec(a).vec(b) = 0 and v...

    Text Solution

    |

  8. If a xx b = c and b xx c = a , then

    Text Solution

    |

  9. If a.b = b.c = c.a = 0, then a.(bxxc)=

    Text Solution

    |

  10. If p = a xx (b + c) + b xx (c + a) + c xx (a + b) q = a xx (b xx c) ...

    Text Solution

    |

  11. If a and b are not perpendicular to each other and r xx a = b xx a, r....

    Text Solution

    |

  12. Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) ...

    Text Solution

    |

  13. If r satisfies the equation r xx (i+2j+k) = i-k then for any scalar la...

    Text Solution

    |

  14. If a = 2i+j+k, b =i+2j+k,c=2i-3j+4k and r is a vector such that r xx b...

    Text Solution

    |

  15. Given three vectors a,b,c such that b.c = 3 a.c = (1)/(3). The vector ...

    Text Solution

    |

  16. Let vec r xx veca = vec b xx veca and vecc vecr=0, where veca.vecc ne ...

    Text Solution

    |

  17. If a xx b = c xx d and a xx c = b xxd, then

    Text Solution

    |

  18. If a and b include an angle of 120^(@) and their magnitudes are 2 and ...

    Text Solution

    |

  19. u = q-r, r-p, p-q and v = (1)/(a),(1)/(b),(1)/(c). If a,b, c be T(p)...

    Text Solution

    |

  20. In a G.P. T(p) = a, T(q) = b and T(r) = c where a, b, c are +ive then...

    Text Solution

    |