Home
Class 12
MATHS
If r satisfies the equation r xx (i+2j+k...

If r satisfies the equation `r xx (i+2j+k) = i-k` then for any scalar `lambda,r` is equal to

A

`i+lambda(i+2j+k)`

B

`j+lambda(i+2j+k)`

C

`k+lambda(i+2j+k)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \mathbf{i} - \mathbf{k} \), we will follow these steps: ### Step 1: Set Up the Cross Product Let \( \mathbf{r} = r_1 \mathbf{i} + r_2 \mathbf{j} + r_3 \mathbf{k} \). We need to compute the cross product \( \mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \). ### Step 2: Write the Determinant The cross product can be calculated using the determinant of a matrix: \[ \mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_1 & r_2 & r_3 \\ 1 & 2 & 1 \end{vmatrix} \] ### Step 3: Expand the Determinant Expanding the determinant, we get: \[ \mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \mathbf{i}(r_2 \cdot 1 - r_3 \cdot 2) - \mathbf{j}(r_1 \cdot 1 - r_3 \cdot 1) + \mathbf{k}(r_1 \cdot 2 - r_2 \cdot 1) \] This simplifies to: \[ = (r_2 - 2r_3) \mathbf{i} - (r_1 - r_3) \mathbf{j} + (2r_1 - r_2) \mathbf{k} \] ### Step 4: Set the Result Equal to the Right-Hand Side We know that: \[ \mathbf{r} \times (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) = \mathbf{i} - \mathbf{k} \] This gives us the equations: 1. \( r_2 - 2r_3 = 1 \) (coefficient of \( \mathbf{i} \)) 2. \( -(r_1 - r_3) = 0 \) (coefficient of \( \mathbf{j} \)) 3. \( 2r_1 - r_2 = -1 \) (coefficient of \( \mathbf{k} \)) ### Step 5: Solve the System of Equations From equation 2: \[ r_1 = r_3 \] Substituting \( r_1 \) for \( r_3 \) in equation 1: \[ r_2 - 2r_1 = 1 \quad \Rightarrow \quad r_2 = 2r_1 + 1 \] Substituting \( r_2 \) in equation 3: \[ 2r_1 - (2r_1 + 1) = -1 \quad \Rightarrow \quad 2r_1 - 2r_1 - 1 = -1 \] This is always true, indicating infinite solutions. ### Step 6: Express \( \mathbf{r} \) Thus, we can express \( \mathbf{r} \) as: \[ \mathbf{r} = r_1 \mathbf{i} + (2r_1 + 1) \mathbf{j} + r_1 \mathbf{k} \] Factoring out \( r_1 \): \[ \mathbf{r} = r_1 (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \mathbf{j} \] ### Step 7: General Solution For any scalar \( \lambda \), we can let \( r_1 = \lambda \): \[ \mathbf{r} = \lambda (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \mathbf{j} \] ### Final Result Thus, the vector \( \mathbf{r} \) can be expressed as: \[ \mathbf{r} = \lambda \mathbf{i} + (2\lambda + 1) \mathbf{j} + \lambda \mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

If vec r satisfies vec r xx (vec i + 2vec j + vec k) = vec i-vec k then for any scalar t, vec r =

If t is a real number, and a vector vec r satisfies the equation vec r times(hat i-2hat j+hat k)=hat i-hat k , then vec r can be equal to- (A) hat j+t(hat i-2hat j+hat k) (B) hat i-hat j+hat k (C) 2hat i-3hat j+2hat k (D) hat i+hat k

If a satisfies vec a xx(hat i+2hat j+hat k)=hat i-hat k, then vec a is equal to lambdahat i+(2 lambda-1)hat j+lambdahat k,lambda epsilon Rblambdahat i+(1-2 lambda)hat j+lambdahat k,lambda epsilon Rclambdahat i+(2 lambda+1)hat j+lambdahat k,lambda epsilon Rdlambdahat i-(1+2 lambda)hat j+lambdahat k,lambda epsilon R

If bar(r) satisfies bar(r)xx(bar(i)+2bar(j)+bar(k))=bar(i)-bar(k), then for any scalar t',bar(r)=

If theta is the between the line r = ( i + 2j- k) + lambda (i - j + 2k) , lambda in R and the plane r. (2i - j + k ) = 4. then a value of cos theta is :

Show that the plane whose vector equation is vec r*(hat i+2hat j=hat k)=3 contains the line whose vector equation is vec r*(hat i+hat j)+lambda(2hat i+hat j+4hat k)

The scalar product of the vector i+j+k with a unit vector along the sum of vectors 2i+4j-5k and lambda i+2j+3k is equal to one.Find the value of lambda

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If a and b are not perpendicular to each other and r xx a = b xx a, r....

    Text Solution

    |

  2. Let the vectors vec(PQ),vec(QR),vec(RS), vec(ST), vec(TU) and vec(UP) ...

    Text Solution

    |

  3. If r satisfies the equation r xx (i+2j+k) = i-k then for any scalar la...

    Text Solution

    |

  4. If a = 2i+j+k, b =i+2j+k,c=2i-3j+4k and r is a vector such that r xx b...

    Text Solution

    |

  5. Given three vectors a,b,c such that b.c = 3 a.c = (1)/(3). The vector ...

    Text Solution

    |

  6. Let vec r xx veca = vec b xx veca and vecc vecr=0, where veca.vecc ne ...

    Text Solution

    |

  7. If a xx b = c xx d and a xx c = b xxd, then

    Text Solution

    |

  8. If a and b include an angle of 120^(@) and their magnitudes are 2 and ...

    Text Solution

    |

  9. u = q-r, r-p, p-q and v = (1)/(a),(1)/(b),(1)/(c). If a,b, c be T(p)...

    Text Solution

    |

  10. In a G.P. T(p) = a, T(q) = b and T(r) = c where a, b, c are +ive then...

    Text Solution

    |

  11. The angle between (vecA xx vec B) and (vecB xx vecA ) is :

    Text Solution

    |

  12. The angle between the vectors 2i+3j+k and 2i-j-k is

    Text Solution

    |

  13. If theta is the angle between vectors a and b, then |a xx b| = | a.b|,...

    Text Solution

    |

  14. If |a|=2, |b|=5 and |a xx b|=8, then what is a, b equal to ?

    Text Solution

    |

  15. If a = 4i + 2j-5k, b =-12i-6j+15k, then the vectors a, b are

    Text Solution

    |

  16. If a^(2) - b^(2)=0, then

    Text Solution

    |

  17. If A =2i + 2j + 3k, B =-i+2j+k and C=3i+j, then A +t B is perpendicula...

    Text Solution

    |

  18. if the vector x i+yj +zk makes an acute angle with the plane of the tw...

    Text Solution

    |

  19. Consider the parallelopiped with sides bar(a)=3bar(i)+2bar(j)+bar(k),b...

    Text Solution

    |

  20. The points A(1,1,2), B (3,4,2) and C(5,6,4) . The exterior angle of th...

    Text Solution

    |