Home
Class 12
MATHS
Consider the parallelopiped with sides b...

Consider the parallelopiped with sides `bar(a)=3bar(i)+2bar(j)+bar(k),bar(b)=bar(i)+bar(j)+2bar(k)` and `bar(c)=bar(i)+3bar(j)+3bar(k)` then angle between `bar(a)` and the plane containing the face determined by `bar(b)` and `bar(c)` is

A

`sin^(-1)""(1)/(3)`

B

`sin^(-1)""(9)/(14)`

C

`cos^(-1)""(9)/(14)`

D

`sin^(-1)""(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

bar(a)=2bar(i)+3bar(j)-4bar(k),bar(b)=bar(i)+bar(j)+bar(k),bar(c)=4bar(i)+2bar(j)+3bar(k) then |bar(a)xx(bar(b)xxbar(c))|=

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

Given bar(a)=bar(i)+2bar(j)+3bar(k),bar(b)=2bar(i)+3bar(j)+bar(k),bar(c)=8bar(i)+13bar(j)+9bar(k) , the linear relation among them if possible is

The lines bar(r)=bar(i)+bar(j)-bar(k)+s(3bar(i)-bar(j)) and bar(r)=4bar(i)-bar(k)+t(2bar(i)+3bar(k))

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

ML KHANNA-ADDITION AND MULTIPLICATION OF VECTORS -Problem Set (2) (MULTIPLE CHOICE QUESTIONS)
  1. If A =2i + 2j + 3k, B =-i+2j+k and C=3i+j, then A +t B is perpendicula...

    Text Solution

    |

  2. if the vector x i+yj +zk makes an acute angle with the plane of the tw...

    Text Solution

    |

  3. Consider the parallelopiped with sides bar(a)=3bar(i)+2bar(j)+bar(k),b...

    Text Solution

    |

  4. The points A(1,1,2), B (3,4,2) and C(5,6,4) . The exterior angle of th...

    Text Solution

    |

  5. A tetrahedron has vertices P(1,2,1),Q(2,1,3),R(-1,1,2) and O(0,0,0). T...

    Text Solution

    |

  6. Let vectors bara, barb, barc and bard be such that (baraxxbarb)xx(ba...

    Text Solution

    |

  7. A plane p(1) is parallel to two vectors 2j + 3k and 4j-3k. Another pla...

    Text Solution

    |

  8. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(ve...

    Text Solution

    |

  9. Let the pair of vector veca,vecb and vecc,veccd each determine a plane...

    Text Solution

    |

  10. In cartesian co-ordinates the points A is (x(1), y(1)) where x(1) = 1 ...

    Text Solution

    |

  11. Vectors a and b makes an angle theta = (2pi)/(3) If |a| = 1, |b| = ...

    Text Solution

    |

  12. Let veca, vecb, vec c form sides BC, CA and AB respectively of a tria...

    Text Solution

    |

  13. The vector r is equal to

    Text Solution

    |

  14. (r.i) (rxxi) + (r.j)(rxxx\j) + (r.k)(rxxk) is equal to

    Text Solution

    |

  15. If a + 2b + 3c= 0, then axxb + bxxc+c xxa is equal to

    Text Solution

    |

  16. If veca=4i+6jand vecb=3j+6k vector form of the component of a along b ...

    Text Solution

    |

  17. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  18. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  19. a =hati +hatj-hatk, b = hati -2hatj +hatk, c = hati -hatj-hatk, then a...

    Text Solution

    |

  20. Projection of the vector 2i+3j-2k on the vector i+2j+3k is

    Text Solution

    |